skip to main content


Title: Photonic metacrystal: design methodology and experimental characterization
We report a design methodology for creating high-performance photonic crystals with arbitrary geometric shapes. This design approach enables the inclusion of subwavelength shapes into the photonic crystal unit cell, synergistically combining metamaterials concepts with on-chip guided-wave photonics. Accordingly, we use the term “ photonic metacrystal ” to describe this class of photonic structures. Photonic metacrystals exploiting three different design freedoms are demonstrated experimentally. With these additional degrees of freedom in the design space, photonic metacrystals enable added control of light-matter interactions and hold the promise of significantly increasing temporal confinement in all-dielectric metamaterials.  more » « less
Award ID(s):
1809937 1407777
NSF-PAR ID:
10389692
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
5
ISSN:
1094-4087
Page Range / eLocation ID:
7612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Over the past decade, artificially engineered optical materials and nanostructured thin films have revolutionized the area of photonics by employing novel concepts of metamaterials and metasurfaces where spatially varying structures yield tailorable “by design” effective electromagnetic properties. The current state-of-the-art approach to designing and optimizing such structures relies heavily on simplistic, intuitive shapes for their unit cells or metaatoms. Such an approach cannot provide the global solution to a complex optimization problem where metaatom shape, in-plane geometry, out-of-plane architecture, and constituent materials have to be properly chosen to yield the maximum performance. In this work, we present a novel machine learning–assisted global optimization framework for photonic metadevice design. We demonstrate that using an adversarial autoencoder (AAE) coupled with a metaheuristic optimization framework significantly enhances the optimization search efficiency of the metadevice configurations with complex topologies. We showcase the concept of physics-driven compressed design space engineering that introduces advanced regularization into the compressed space of an AAE based on the optical responses of the devices. Beyond the significant advancement of the global optimization schemes, our approach can assist in gaining comprehensive design “intuition” by revealing the underlying physics of the optical performance of metadevices with complex topologies and material compositions. 
    more » « less
  2. We propose a rigorous approach for the inverse design of functional photonic structures by coupling the adjoint optimization method and the 2D generalized Mie theory (2D-GMT) for the multiple scattering problem of finite-sized arrays of dielectric nanocylinders optimized to display desired functions. We refer to these functional scattering structures as “photonic patches.” We briefly introduce the formalism of 2D-GMT and the critical steps necessary to implement the adjoint optimization algorithm to photonic patches with designed radiation properties. In particular, we showcase several examples of periodic and aperiodic photonic patches with optimal nanocylinder radii and arrangements for radiation shaping, wavefront focusing in the Fresnel zone, and for the enhancement of the local density of states (LDOS) at multiple wavelengths over micron-sized areas. Moreover, we systematically compare the performances of periodic and aperiodic patches with different sizes and find that optimized aperiodic Vogel spiral geometries feature significant advantages in achromatic focusing compared to their periodic counterparts. Our results show that adjoint optimization coupled to 2D-GMT is a robust methodology for the inverse design of compact photonic devices that operate in the multiple scattering regime with optimal desired functionalities. Without the need for spatial meshing, our approach provides efficient solutions at a strongly reduced computational burden compared to standard numerical optimization techniques and suggests compact device geometries for on-chip photonics and metamaterials technologies.

     
    more » « less
  3. Abstract

    Topological phases of matter have been attracting significant attention across diverse fields, from inherently quantum systems to classical photonic and acoustic metamaterials. In photonics, topological phases offer resilience and bring novel opportunities to control light with pseudo-spins. However, topological photonic systems can suffer from limitations, such as breakdown of topological properties due to their symmetry-protected origin and radiative leakage. Here we introduce adiabatic topological photonic interfaces, which help to overcome these issues. We predict and experimentally confirm that topological metasurfaces with slowly varying synthetic gauge fields significantly improve the guiding features of spin-Hall and valley-Hall topological structures commonly used in the design of topological photonic devices. Adiabatic variation in the domain wall profiles leads to the delocalization of topological boundary modes, making them less sensitive to details of the lattice, perceiving the structure as an effectively homogeneous Dirac metasurface. As a result, the modes showcase improved bandgap crossing, longer radiative lifetimes and propagation distances.

     
    more » « less
  4. Shape memory polymers are gaining significant interest as one of the major constituent materials for the emerging field of 4D printing. While 3D-printed metamaterials with shape memory polymers show unique thermomechanical behaviors, their thermal transport properties have received relatively little attention. Here, we show that thermal transport in 3D-printed shape memory polymers strongly depends on the shape, solid volume fraction, and temperature and that thermal radiation plays a critical role. Our infrared thermography measurements reveal thermal transport mechanisms of shape memory polymers in varying shapes from bulk to octet-truss and Kelvin-foam microlattices with volume fractions of 4%–7% and over a temperature range of 30–130 °C. The thermal conductivity of bulk shape memory polymers increases from 0.24 to 0.31 W m −1  K −1 around the glass transition temperature, in which the primary mechanism is the phase-dependent change in thermal conduction. On the contrary, thermal radiation dominates heat transfer in microlattices and its contribution to the Kelvin-foam structure ranges from 68% to 83% and to the octet-truss structure ranges from 59% to 76% over the same temperature range. We attribute this significant role of thermal radiation to the unique combination of a high infrared emissivity and a high surface-to-volume ratio in the shape memory polymer microlattices. Our work also presents an effective medium approach to explain the experimental results and model thermal transport properties with varying shapes, volume fractions, and temperatures. These findings provide new insights into understanding thermal transport mechanisms in 4D-printed shape memory polymers and exploring the design space of thermomechanical metamaterials. 
    more » « less
  5. null (Ed.)
    Abstract Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations and immense, often intractable, geometrical design spaces. Using a precomputed dataset of unit cells, a multiscale structure can be quickly filled via combinatorial search algorithms, and machine learning models can be trained to accelerate the process. However, the dependence on data induces a unique challenge: an imbalanced dataset containing more of certain shapes or physical properties can be detrimental to the efficacy of data-driven approaches. In answer, we posit that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning. To select such subsets, we propose METASET, a methodology that (1) uses similarity metrics and positive semi-definite kernels to jointly measure the closeness of unit cells in both shape and property spaces and (2) incorporates Determinantal Point Processes for efficient subset selection. Moreover, METASET allows the trade-off between shape and property diversity so that subsets can be tuned for various applications. Through the design of 2D metamaterials with target displacement profiles, we demonstrate that smaller, diverse subsets can indeed improve the search process as well as structural performance. By eliminating inherent overlaps in a dataset of 3D unit cells created with symmetry rules, we also illustrate that our flexible method can distill unique subsets regardless of the metric employed. Our diverse subsets are provided publicly for use by any designer. 
    more » « less