skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New Insights into the Formation of Aggregates of Bidisperse Nano- and Microplastics in Water Based on the Analysis of In Situ Microscopy and Molecular Simulation
Microplastics (MPs) and nanoplastics (NPs) in water pose a global threat to human health and the environment. To develop efficient removal strategies, it is crucial to understand how these particles behave as they aggregate. However, our knowledge of the process of aggregate formation from primary particles of different sizes is limited. In this study, we analyzed the growth kinetics and structures of aggregates formed by polystyrene MPs in mono- and bidisperse systems using in situ microscopy and image analysis. Our findings show that the scaling behavior of aggregate growth remains unaffected by the primary particle size distribution, but it does delay the onset of rapid aggregation. We also performed a structural analysis that reveals the power law dependence of aggregate fractal dimension (df) in both mono- and bidisperse systems, with mean df consistent with diffusion-limited cluster aggregation (DLCA) aggregates. Our results also suggest that the df of aggregates is insensitive to the shape anisotropy. We simulated molecular forces driving aggregation of polystyrene NPs of different sizes under high ionic strength conditions. These conditions represent salt concentration in ocean water and wastewater, where the DLVO theory does not apply. Our simulation results show that the aggregation tendency of the NPs increases with the ionic strength. The increase in the aggregation is caused by the depletion of clusters of ions from the NPs surface.  more » « less
Award ID(s):
2046095
PAR ID:
10593542
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Walker, Gilbert
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Langmuir
Edition / Version:
1
Volume:
40
Issue:
28
ISSN:
0743-7463
Page Range / eLocation ID:
14455 to 14466
Subject(s) / Keyword(s):
nanoparticle aggregation
Format(s):
Medium: X Size: 6.34 MB Other: pdf/A
Size(s):
6.34 MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the effect of hydrodynamics on aggregate size and structure is key to predicting mass transport in the aquatic environment. Aggregation theory of particles is well established but our knowledge of deformation processes, biological bonding forces, and their effects on fragmentation of aquatic aggregates is still limited. To better comprehend fragmentation processes and adhesion forces we implemented breakup experiments with diatom and microplastic aggregates made in the laboratory. We captured a substantial number of events showing deformation and subsequent fragmentation of these aggregates in an oscillatory shear flow. Polystyrene and polyethylene aggregates showed distinct fragmentation strengths and provided comparative upper and lower limits to the biological bonding strength of the diatom aggregates. Additionally, we employed a force balance model to evaluate attractive interactions within clusters of particles using the Lagrangian stress history and morphology. We found that the fractal structures of aggregates led to a power law of breakup strength with size and that time-integrated stress governed the overall fragmentation process. We also found that the weakening of the aggregates through deformation with shear exposure enabled their disaggregation at very low shear rates typical of the ocean environment. 
    more » « less
  2. null (Ed.)
    The fate of particulate matter in the ocean is determined in large part by its size and settling rate. Disaggregation, caused by turbulence-induced shear, acts to fracture or erode large particles into slower-settling sub-aggregates and primary particles. The strength and breakup response of organic marine aggregates (i.e. marine snow particles consisting of phytoplankton) is poorly understood, limiting our ability to accurately predict marine particle transport effects on the global carbon cycle. A study was conducted to enable the investigation of disaggregation effects on these organic marine particle aggregates. Due to the fragile nature of the Phytoplankton cells and their resulting aggregates, test facilities that do not rely on external sampling or pumps are required. A novel rolling aggregation tank was developed that can both aggregate phytoplankton cells under varying hydrodynamic conditions and then expose them to calibrated shear forces using laminar oscillating flow. The theory behind the operation of this tank is presented along with the necessary operating conditions to create stable regions within the tank where particle settling effects are minimal but shear is still representative of values expected in the open ocean. Phytoplankton was cultured in the laboratory to create simulated marine snow particles in the open ocean for disaggregation experiments. The procedure to calculate and track the shear-history of each aggregate is described and how the data generated from this facility will be used to quantify disaggregation parameters relevant for population balance modeling is discussed. 
    more » « less
  3. null (Ed.)
    Polyelectrolyte-driven flocculation of suspended particulate in solution is an important process in a variety of industrial processes such as drinking water treatment and composite material synthesis. Flocculation depends on a wide variety of physicochemical and hydrodynamic properties, which affect floc size, growth rate, and floc morphology. Floc formation and growth behavior is explored here using two different molecular weights of a cationic polyacrylamide flocculant and anisotropic Na-bentonite clay particles under a variety of solution ionic strengths. A Taylor–Couette cell with radial injection capabilities was used to study the effects of solution ionic strength and polyelectrolyte molecular weight on floc size, growth rate, and floc morphology during the flocculation process with a constant global velocity gradient. The floc size generally decreased with increasing ionic strength whereas the floc growth rate initially increased then decreased. This likely occurred due to charge screening effects, where increased bentonite aggregate size and a less expanded polyelectrolyte conformation at higher ionic strengths results in a decreased ability for the polyelectrolyte to bridge multiple bentonite aggregates. The densification of bentonite aggregates at higher ionic strengths resulted in floc morphologies that were more resistant to shear-induced breakage. With the exceptions of optimal dose concentration and dispersion coefficients, there were no clear differences in the floc growth rate behaviors for the two molecular weights studied. This work contributes to an improved understanding of the physicochemical complexities of polyelectrolyte-driven flocculation that can inform dosing requirements for more efficient industrial operations. 
    more » « less
  4. null (Ed.)
    Particle size and settling speed determine the rate of particulate mass transfer from the ocean surface to the sea bed. Turbulent shear in the ocean can act on large, faster-settling flocculated particles to break them into slower-settling primary particles or sub-aggregates. However, it is difficult to understand the disruption behavior of aggregates and their response to varying shear forces due to the complex ocean environment. A study was conducted to simulate the disruption behavior of marine aggregates in the mixed layer of the ocean. The breakup process was investigated by aggregating and disrupting flocs of bentonite clay particles in a rotating and oscillating cylindrical tank 10 cm in diameter filled with salt water. This laboratory tank, which operated based on an extension of Stokes’ second problem inside a cylinder, created laminar oscillating flow superimposed on a constant rotation. This motion allowed the bentonite particles to aggregate near the center of the tank but also exposed large aggregates to high shear forces near the wall. A high-speed camera system was used, along with particle tracking measurements and image processing techniques, to capture the breakup of the large particle aggregates and locate their radial position. The breakup response of large aggregates and the sizes of their daughter particles after breakup were quantified using the facility. The disruption strength of the aggregated particles is presented and discussed relative to their exposure to varying amounts of laminar shear. 
    more » « less
  5. null (Ed.)
    In this work, we investigate the role of folding/unfolding equilibrium in protein aggregation and formation of a gel network. Near the neutral pH and at a low buffer ionic strength, the formation of the gel network around unfolding conditions prevents investigations of protein aggregation. In this study, by deploying the fact that in lysozyme solutions the time of folding/unfolding is much shorter than the characteristic time of gelation, we have prevented gelation by rapidly heating the solution up to the unfolding temperature (~80 °C) for a short time (~30 min.) followed by fast cooling to the room temperature. Dynamic light scattering measurements show that if the gelation is prevented, nanosized irreversible aggregates (about 10–15 nm radius) form over a time scale of 10 days. These small aggregates persist and aggregate further into larger aggregates over several weeks. If gelation is not prevented, the nanosized aggregates become the building blocks for the gel network and define its mesh length scale. These results support our previously published conclusion on the nature of mesoscopic aggregates commonly observed in solutions of lysozyme, namely that aggregates do not form from lysozyme monomers in their native folded state. Only with the emergence of a small fraction of unfolded proteins molecules will the aggregates start to appear and grow. 
    more » « less