skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: JWST Imaging of the Cartwheel Galaxy Reveals Dust Associated with SN 2021afdx
Abstract We present near- and mid-infrared (0.9–18μm) photometry of supernova (SN) 2021afdx, which was imaged serendipitously with the James Webb Space Telescope (JWST) as part of its Early Release Observations of the Cartwheel Galaxy. Our ground-based optical observations show it is likely to be a Type IIb SN, the explosion of a yellow supergiant, and its infrared spectral energy distribution (SED) ≈200 days after explosion shows two distinct components, which we attribute to hot ejecta and warm dust. By fitting models of dust emission to the SED, we derive a dust mass of ( 3.8 0.3 + 0.5 ) × 10 3 M , which is the highest yet observed in a Type IIb SN but consistent with other Type II SNe observed by the Spitzer Space Telescope. We also find that the radius of the dust is significantly larger than the radius of the ejecta, as derived from spectroscopic velocities during the photospheric phase, which implies that we are seeing an infrared echo off of preexisting dust in the progenitor environment, rather than dust newly formed by the SN. Our results show the power of JWST to address questions of dust formation in SNe, and therefore the presence of dust in the early universe, with much larger samples than have been previously possible.  more » « less
Award ID(s):
1813466 1911225 1911151
PAR ID:
10390096
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
942
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L18
Size(s):
Article No. L18
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study a magnitude-limited sample of 36 broad-lined type Ic supernovae (SNe Ic-BL) from the Zwicky Transient Facility Bright Transient Survey (detected between 2018 March and 2021 August), which is the largest systematic study of SNe Ic-BL done in literature thus far. We present the light curves (LCs) for each of the SNe and analyze the shape of the LCs to derive empirical parameters, along with the explosion epochs for every event. The sample has an average absolute peak magnitude in therband of M ¯ r , max = 18.51 ± 0.15 mag. Using spectra obtained around peak light, we compute expansion velocities from the Feii5169 Å line for each event with high enough signal-to-noise ratio spectra, and find an average value of v ph ¯ = 16 , 100 ± 1100 km s−1. We also compute bolometric LCs, study the blackbody temperature and radii evolution over time, and derive the explosion properties of the SNe. The explosion properties of the sample have average values of M ¯ Ni = 0.37 0.06 + 0.08 M , M ¯ ej = 2.45 0.41 + 0.47 M , and E ¯ K = ( 4.02 1.00 + 1.37 ) × 10 51 erg. Thirteen events have radio observations from the Very Large Array, with eight detections and five non-detections. We find that the populations that have radio detections and radio non-detections are indistinct from one another with respect to their optically inferred explosion properties, and there are no statistically significant correlations present between the events’ radio luminosities and optically inferred explosion properties. This provides evidence that the explosion properties derived from optical data alone cannot give inferences about the radio properties of SNe Ic-BL and likely their relativistic jet formation mechanisms. 
    more » « less
  2. Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <z< 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz> 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z< 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0< 0 in ΛCDM) with over 5σconfidence. We find ( Ω M , w ) = ( 0.264 0.096 + 0.074 , 0.80 0.16 + 0.14 ) in flatwCDM. For flatw0waCDM, we find ( Ω M , w 0 , w a ) = ( 0.495 0.043 + 0.033 , 0.36 0.30 + 0.36 , 8.8 4.5 + 3.7 ) , consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses. 
    more » « less
  3. Abstract We present a stringent measurement of the dust-obscured star formation rate density (SFRD) atz= 4–6 from the ASPIRE JWST Cycle-1 medium and ALMA Cycle-9 large program. We obtained JWST/NIRCam grism spectroscopy and ALMA 1.2 mm continuum map along 25 independent quasar sightlines, covering a total survey area of  ∼35 arcmin2where we search for dusty star-forming galaxies (DSFGs) atz= 0–7. We identify eight DSFGs in seven fields atz= 4–6 through the detection of Hαor [O iii]λ5008 lines, including fainter lines such as Hβ, [O iii]λ4960, [N ii]λ6585, and [S ii]λλ6718,6733 for six sources. With this spectroscopically complete DSFG sample atz= 4–6 and negligible impact from cosmic variance (shot noise), we measure the infrared luminosity function (IRLF) down toLIR ∼ 2 × 1011L. We find flattening of IRLF atz= 4–6 towards the faint end (power-law slope α = 0.5 9 0.45 + 0.39 ). We determine the dust-obscured cosmic SFRD at this epoch to be log [ ρ SFR , IR / ( M yr 1 Mpc 3 ) ] = 1.5 2 0.13 + 0.14 . This is significantly higher than previous determinations using ALMA data in the Hubble Ultra Deep Field, which is void of DSFGs atz= 4–6 because of strong cosmic variance (shot noise). We conclude that the majority (66% ± 7%) of cosmic star formation atz ∼ 5 is still obscured by dust. We also discuss the uncertainty of SFRD propagated from far-IR spectral energy distribution and IRLF at the bright end, which will need to be resolved with future ALMA and JWST observations. 
    more » « less
  4. Abstract We present preexplosion optical and infrared (IR) imaging at the site of the type II supernova (SN II) 2023ixf in Messier 101 at 6.9 Mpc. We astrometrically registered a ground-based image of SN 2023ixf to archival Hubble Space Telescope (HST), Spitzer Space Telescope (Spitzer), and ground-based near-IR images. A single point source is detected at a position consistent with the SN at wavelengths ranging from HSTRband to Spitzer 4.5μm. Fitting with blackbody and red supergiant (RSG) spectral energy distributions (SEDs), we find that the source is anomalously cool with a significant mid-IR excess. We interpret this SED as reprocessed emission in a 8600Rcircumstellar shell of dusty material with a mass ∼5 × 10−5Msurrounding a log ( L / L ) = 4.74 ± 0.07 and T eff = 3920 160 + 200 K RSG. This luminosity is consistent with RSG models of initial mass 11M, depending on assumptions of rotation and overshooting. In addition, the counterpart was significantly variable in preexplosion Spitzer 3.6 and 4.5μm imaging, exhibiting ∼70% variability in both bands correlated across 9 yr and 29 epochs of imaging. The variations appear to have a timescale of 2.8 yr, which is consistent withκ-mechanism pulsations observed in RSGs, albeit with a much larger amplitude than RSGs such asαOrionis (Betelgeuse). 
    more » « less
  5. Abstract We present chemical abundances and velocities of five stars between 0.3 and 1.1 kpc from the center of the Tucana II ultrafaint dwarf galaxy (UFD) from high-resolution Magellan/MIKE spectroscopy. We find that every star is deficient in metals (−3.6 < [Fe/H] < −1.9) and in neutron-capture elements as is characteristic of UFD stars, unambiguously confirming their association with Tucana II. Other chemical abundances (e.g., C, iron peak) largely follow UFD trends and suggest that faint core-collapse supernovae (SNe) dominated the early evolution of Tucana II. We see a downturn in [α/Fe] at [Fe/H] ≈ −2.8, indicating the onset of Type Ia SN enrichment and somewhat extended chemical evolution. The most metal-rich star has strikingly low [Sc/Fe] = −1.29 ± 0.48 and [Mn/Fe] = −1.33 ± 0.33, implying significant enrichment by a sub-Chandrasekhar mass Type Ia SN. We do not detect a radial velocity gradient in Tucana II ( dv helio / d θ 1 = 2.6 2.9 + 3.0 km s−1kpc−1), reflecting a lack of evidence for tidal disruption, and derive a dynamical mass of M 1 / 2 ( r h ) = 1.6 0.7 + 1.1 × 10 6 M. We revisit formation scenarios of the extended component of Tucana II in light of its stellar chemical abundances. We find no evidence that Tucana II had abnormally energetic SNe, suggesting that if SNe drove in situ stellar halo formation, then other UFDs should show similar such features. Although not a unique explanation, the decline in [α/Fe] is consistent with an early galactic merger triggering later star formation. Future observations may disentangle such formation channels of UFD outskirts. 
    more » « less