skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rheological properties of phase transitions in polydisperse and monodisperse colloidal rod systems
Abstract Rheological modifiers are added to formulations to tune rheology, enable function and drive phase changes requiring an understanding of material structure and properties. We characterize two colloidal rod systems during phase transitions using multiple particle tracking microrheology, which measures the Brownian motion of probes embedded in a sample. These systems include a colloid (monodisperse polyamide or polydisperse hydrogenated castor oil), surfactant (linear alkylbenzene sulfonate [LAS]), and nonabsorbing polymer (polyethylene oxide [PEO]) which drives gelation by depletion interactions. Phase transitions are characterized at all concentrations using time‐cure superposition. We determine that rheological evolution depends onLAS:colloid. The critical PEO concentration required to form a gel,cc/c*, is independent ofLAS:colloid, critical relaxation exponent,n, is dependent onLAS:colloid, and both are independent of colloid polydispersity.nindicates the material structure at the phase transition. AtLAS:colloid > 16, the scaffold is a tightly associated network and atLAS:colloid = 16 a loosely associated network.  more » « less
Award ID(s):
1933251
PAR ID:
10390134
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
67
Issue:
11
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rheological modifiers tune product rheology with a small amount of material. To effectively use rheological modifiers, characterizing the rheology of the system at different compositions is crucial. Two colloidal rod system, hydrogenated castor oil and polyamide, are characterized in a formulation that includes a surfactant (linear alkylbenzene sulfonate) and a depletant (polyethylene oxide). We characterize both rod systems using multiple particle tracking microrheology (MPT) and bulk rheology and build phase diagrams over a large component composition space. In MPT, fluorescent particles are embedded in the sample and their Brownian motion is measured and related to rheological properties. From MPT, we determine that in both systems: (1) microstructure is not changed with increasing colloid concentration, (2) materials undergo a sol–gel transition as depletant concentration increases and (3) the microstructure changes but does not undergo a phase transition as surfactant concentration increases in the absence of depletant. When comparing MPT and bulk rheology results different trends are measured. Using bulk rheology we observe: (1) elasticity of both systems increase as colloid concentration increases and (2) the storage modulus does not change when PEO or LAS concentration is increased. The differences measured with MPT and bulk rheology are likely due to differences in sensitivity and measurement method. This work shows the utility of using both techniques together to fully characterize rheological properties over a large composition space. These gelation phase diagrams will provide a guide to determine the composition needed for desired rheological properties and eliminate trial-and-error experiments during product formulation. 
    more » « less
  2. Crystallization from the melt is a critical process governing the properties of semi-crystalline polymeric materials. While structural analyses of melting and crystallization transitions in bulk polymers have been widely reported, in contrast, those in thin polymer films on solid supports have been underexplored. Herein, in situ Raman microscopy and self-modeling curve resolution (SMCR) analysis are applied to investigate the temperature-dependent structural changes in poly(ethylene oxide) (PEO) films during melting and crystallization phase transitions. By resolving complex overlapping sets of spectra, SMCR analysis reveals that the thermal transitions of 50 µm thick PEO films comprise two structural phases: an ordered crystalline phase and a disordered amorphous phase. The ordered structure of the crystalline PEO film entirely disappears as the polymer is heated; conversely, the disordered structure of the amorphous PEO film reverts to the ordered structure as the polymer is cooled. Broadening of the Raman bands was observed in PEO films above the melting temperature (67 °C), while sharpening of bands was observed below the crystallization temperature (45 °C). The temperatures at which these spectral changes occurred were in good agreement with differential scanning calorimetry (DSC) measurements, especially during the melting transition. The results illustrate that in situ Raman microscopy coupled with SMCR analysis is a powerful approach for unraveling complex structural changes in thin polymer films during melting and crystallization processes. Furthermore, we show that confocal Raman microscopy opens opportunities to apply the methodology to interrogate the structural features of PEO or other surface-supported polymer films as thin as 2 µm, a thickness regime beyond the reach of conventional thermal analysis techniques. 
    more » « less
  3. Abstract The dominant form of oxygen in cold molecular clouds is gas-phase carbon monoxide (CO) and ice-phase water (H2O). Yet, in planet-forming disks around young stars, gas-phase CO and H2O are less abundant relative to their interstellar medium values, and no other major oxygen-carrying molecules have been detected. Some astrochemical models predict that gas-phase molecular oxygen (O2) should be a major carrier of volatile oxygen in disks. We report a deep search for emission from the isotopologue16O18O (NJ= 21− 01line at 233.946 GHz) in the nearby protoplanetary disk around TW Hya. We used imaging techniques and matched filtering to search for weak emission but do not detect16O18O. Based on our results, we calculate upper limits on the gas-phase O2abundance in TW Hya of (6.4–70) × 10−7relative to H, which is 2–3 orders of magnitude below solar oxygen abundance. We conclude that gas-phase O2is not a major oxygen carrier in TW Hya. Two other potential oxygen-carrying molecules, SO and SO2, were covered in our observations, which we also do not detect. Additionally, we report a serendipitous detection of the C15NNJ= 25/2− 13/2hyperfine transitions,F= 3 − 2 andF= 2 − 1, at 219.9 GHz, which we found via matched filtering and confirm through imaging. 
    more » « less
  4. Abstract Kagome materials are of topical interest for their diverse quantum properties linked with correlated magnetism and topology. Here, we report anomalous hydrostatic pressure (p) effect on ErMn6Sn6through isobaric and isothermal-isobaric magnetization measurements. Magnetic field (H) suppresses antiferromagneticTNwhile simultaneously enhancing the ferrimagneticTCby exhibiting dual metamagnetic transitions, arising from the triple-spiral-nature of Er and Mn spins. Counter-intuitively, pressure enhances bothTCandTNwith a growth rate of 74.4 K GPa−1and 14.4 K GPa−1respectively. Pressure unifies the dual metamagnetic transitions as illustrated throughp-Hphase diagrams at 140 and 200 K. Temperature-field-pressure (T-H,T-p) phase diagrams illustrate distinct field- and pressure-induced critical points at (Tcr= 246 K,Hcr= 23.3 kOe) and (Tcr= 435.8 K,pcr= 4.74 GPa) respectively. An unusual increase of magnetic entropy by pressure aroundTcrand a putative pressure-induced tricritical point pave a unique way of tuning the magnetic properties of kagome magnets through simultaneous application ofHandp. 
    more » « less
  5. Abstract We use elastic and inelastic neutron scattering (INS) to study the antiferromagnetic (AF) phase transitions and spin excitations in the two-dimensional (2D) zig-zag antiferromagnet FePSe3. By determining the magnetic order parameter across the AF phase transition, we conclude that the AF phase transition in FePSe3is first-order in nature. In addition, our INS measurements reveal that the spin waves in the AF ordered state have a large easy-axis magnetic anisotropy gap, consistent with an Ising Hamiltonian, and possible biquadratic magnetic exchange interactions. On warming acrossTN, we find that dispersive spin excitations associated with three-fold rotational symmetric AF fluctuations change into FM spin fluctuations aboveTN. These results suggest that the first-order AF phase transition in FePSe3may arise from the competition betweenC3symmetric AF andC1symmetric FM spin fluctuations aroundTN, in place of a conventional second-order AF phase transition. 
    more » « less