skip to main content


Title: Rheological properties of phase transitions in polydisperse and monodisperse colloidal rod systems
Abstract

Rheological modifiers are added to formulations to tune rheology, enable function and drive phase changes requiring an understanding of material structure and properties. We characterize two colloidal rod systems during phase transitions using multiple particle tracking microrheology, which measures the Brownian motion of probes embedded in a sample. These systems include a colloid (monodisperse polyamide or polydisperse hydrogenated castor oil), surfactant (linear alkylbenzene sulfonate [LAS]), and nonabsorbing polymer (polyethylene oxide [PEO]) which drives gelation by depletion interactions. Phase transitions are characterized at all concentrations using time‐cure superposition. We determine that rheological evolution depends onLAS:colloid. The critical PEO concentration required to form a gel,cc/c*, is independent ofLAS:colloid, critical relaxation exponent,n, is dependent onLAS:colloid, and both are independent of colloid polydispersity.nindicates the material structure at the phase transition. AtLAS:colloid > 16, the scaffold is a tightly associated network and atLAS:colloid = 16 a loosely associated network.

 
more » « less
Award ID(s):
1933251
NSF-PAR ID:
10390134
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
67
Issue:
11
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rheological modifiers tune product rheology with a small amount of material. To effectively use rheological modifiers, characterizing the rheology of the system at different compositions is crucial. Two colloidal rod system, hydrogenated castor oil and polyamide, are characterized in a formulation that includes a surfactant (linear alkylbenzene sulfonate) and a depletant (polyethylene oxide). We characterize both rod systems using multiple particle tracking microrheology (MPT) and bulk rheology and build phase diagrams over a large component composition space. In MPT, fluorescent particles are embedded in the sample and their Brownian motion is measured and related to rheological properties. From MPT, we determine that in both systems: (1) microstructure is not changed with increasing colloid concentration, (2) materials undergo a sol–gel transition as depletant concentration increases and (3) the microstructure changes but does not undergo a phase transition as surfactant concentration increases in the absence of depletant. When comparing MPT and bulk rheology results different trends are measured. Using bulk rheology we observe: (1) elasticity of both systems increase as colloid concentration increases and (2) the storage modulus does not change when PEO or LAS concentration is increased. The differences measured with MPT and bulk rheology are likely due to differences in sensitivity and measurement method. This work shows the utility of using both techniques together to fully characterize rheological properties over a large composition space. These gelation phase diagrams will provide a guide to determine the composition needed for desired rheological properties and eliminate trial-and-error experiments during product formulation. 
    more » « less
  2. Abstract

    We explore the crystal structure and ionic conductivity of unfilled and cellulose nanowhisker‐filled polymer electrolytes, based on high molecular weight PEO and LiClO4at a concentration EO:Li = 6:1 (EO = ether oxygen). At this concentration, the polymer electrolyte forms crystalline PEO6(PEOy—the crystal structure co‐crystallizes “y” PEO ether oxygens to one Li‐anion pair). While the diffraction patterns for PEO3and PEO6with LiClO4are available, their structures are not. Thus, we optimize these structures using density functional theory and show agreement between simulated and experimental diffraction patterns. The PEO6crystal shows insufficient Li‐ion conductivity due to a lack of percolated conduction paths, and the crystal structure is unstable following 2 months after annealing. Cellulose nanowhiskers, with their patterned surface OH groups, extend the length of PEO6tunnels, stabilize these tunnels for as long as a year, and result in the percolation of crystals. Although the EO:Li = 6:1 stoichiometry should not favor PEO3formation, we observe this crystal phase in some unfilled samples. But, with the addition of nanowhiskers, the patterned surface templates PEO6formation rather than PEO3. Despite these advantages, nanowhiskers do not improve ionic conductivity as hypothesized. The tools developed in this work allow further mechanistic exploration of conduction through crystalline domains.

     
    more » « less
  3. Abstract

    The dominant form of oxygen in cold molecular clouds is gas-phase carbon monoxide (CO) and ice-phase water (H2O). Yet, in planet-forming disks around young stars, gas-phase CO and H2O are less abundant relative to their interstellar medium values, and no other major oxygen-carrying molecules have been detected. Some astrochemical models predict that gas-phase molecular oxygen (O2) should be a major carrier of volatile oxygen in disks. We report a deep search for emission from the isotopologue16O18O (NJ= 21− 01line at 233.946 GHz) in the nearby protoplanetary disk around TW Hya. We used imaging techniques and matched filtering to search for weak emission but do not detect16O18O. Based on our results, we calculate upper limits on the gas-phase O2abundance in TW Hya of (6.4–70) × 10−7relative to H, which is 2–3 orders of magnitude below solar oxygen abundance. We conclude that gas-phase O2is not a major oxygen carrier in TW Hya. Two other potential oxygen-carrying molecules, SO and SO2, were covered in our observations, which we also do not detect. Additionally, we report a serendipitous detection of the C15NNJ= 25/2− 13/2hyperfine transitions,F= 3 − 2 andF= 2 − 1, at 219.9 GHz, which we found via matched filtering and confirm through imaging.

     
    more » « less
  4. Abstract

    The hydration of tricalcium silicate (C3S)—the major phase in cement—is effectively arrested when the activity of water (aH) decreases below the critical value of 0.70. While it is implicitly understood that the reduction inaHsuppresses the hydration of tricalcium aluminate (C3A: the most reactive phase in cement), the dependence of kinetics of C3A hydration onaHand the criticalaHat which hydration of C3A is arrested are not known. This study employs isothermal microcalorimetry and complementary material characterization techniques to elucidate the influence ofaHon the hydration of C3A in [C3A + calcium sulfate (C$) + water] pastes. Reductions in water activity are achieved by partially replacing the water in the pastes with isopropanol. The results show that with decreasingaH, the kinetics of all reactions associated with C3A (eg, with C$, resulting in ettringite formation; and with ettringite, resulting in monosulfoaluminate formation) are proportionately suppressed. WhenaH ≤0.45, the hydration of C3A and the precipitation of all resultant hydrates are arrested; even in liquid saturated systems. In addition to—and separate from—the experiments, a thermodynamic analysis also indicates that the hydration of C3A does not commence or advance whenaH ≤0.45. On the basis of this criticalaH, the solubility product of C3A (KC3A) was estimated as 10−20.65. The outcomes of this work articulate the dependency of C3A hydration and its kinetics on water activity, and establish—for the first time—significant thermodynamic parameters (ie, criticalaHandKC3A) that are prerequisites for numerical modeling of C3A hydration.

     
    more » « less
  5. Abstract

    Calanus finmarchicuswere reared from eggs to adults at 12°C and 16°C with non‐limiting food in combination with ambient (600μatm) and high (1100μatm)pCO2. These conditions are likely to be encountered by the species at the southern margins of its biogeographical range by the end of the century. Dry weight (DW), carbon (C) and nitrogen (N) mass, oil‐sac volume (OSV), fatty acid composition (FA), and oxygen consumption rates (OCR) were measured on newly molted stage CV copepodites and recently molted adult females. By focusing our measurements on these precise events in the life cycle, we were able to obtain a more accurate comparison of growth and respiration across treatments. Copepods raised at 12°C had a significantly greater DW, OSV, and C and N mass than those raised at 16°C HighpCO2, independent of temperature, was associated with a further increase in the DW and C content of the copepods. Interactive effects of temperature andpCO2resulted in a larger OSV at low temperature and highpCO2. Mass‐specific respiration rates were significantly lower at lower temperatures and elevatedpCO2suggesting that the increase in mass (DW, C, and OSV) resulted from reduced metabolic cost. The composition of fatty acids in the copepods varied mainly with temperature. Two fatty acids varied withpCO2: 16:0 tended to decrease with higherpCO2and 18:3n−3 tended to increase with higherpCO2. These observations suggest that elevatedpCO2/lower pH in future oceans may have a beneficial effect onC. finmarchicus.

     
    more » « less