skip to main content


Title: An Exploration of AGN and Stellar Feedback Effects in the Intergalactic Medium via the Low-redshift Lyα Forest
Abstract

We explore the role of galactic feedback on the low-redshift Lyα(Lyα) forest (z≲ 2) statistics and its potential to alter the thermal state of the intergalactic medium. Using the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) suite, we explore variations of the AGN and stellar feedback models in the IllustrisTNG and Simba subgrid models. We find that both AGN and stellar feedback in Simba play a role in setting the Lyαforest column density distribution function (CDD) and the Doppler width (b-value) distribution. The Simba AGN jet feedback mode is able to efficiently transport energy out to the diffuse IGM, causing changes in the shape and normalization of the CDD and a broadening of theb-value distribution. We find that stellar feedback plays a prominent role in regulating supermassive black hole growth and feedback, highlighting the importance of constraining stellar and AGN feedback simultaneously. In IllustrisTNG, the AGN feedback variations explored in CAMELS do not affect the Lyαforest, but varying the stellar feedback model does produce subtle changes. Our results imply that the low-zLyαforest can be sensitive to changes in the ultraviolet background, stellar and black hole feedback, and that AGN jet feedback in particular can have a strong effect on the thermal state of the IGM.

 
more » « less
NSF-PAR ID:
10473123
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
166
Issue:
6
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 228
Size(s):
["Article No. 228"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Active galactic nuclei (AGNs) feedback models are generally calibrated to reproduce galaxy observables such as the stellar mass function and the bimodality in galaxy colors. We use variations of the AGN feedback implementations in the IllustrisTNG (TNG) andSimbacosmological hydrodynamic simulations to show that the low-redshift Lyαforest can provide constraints on the impact of AGN feedback. We show that TNG overpredicts the number density of absorbers at column densitiesNHI< 1014cm−2compared to data from the Cosmic Origins Spectrograph (in agreement with previous work), and we demonstrate explicitly that its kinetic feedback mode, which is primarily responsible for galaxy quenching, has a negligible impact on the column density distribution (CDD) of absorbers. In contrast, we show that the fiducialSimbamodel, which includes AGN jet feedback, is the preferred fit to the observed CDD of thez= 0.1 Lyαforest across 5 orders of magnitude in column density. We show that theSimbaresults with jets produce a quantitatively better fit to the observational data than theSimbaresults without jets, even when the ultraviolet background is left as a free parameter. AGN jets inSimbaare high speed, collimated, weakly interacting with the interstellar medium (via brief hydrodynamic decoupling), and heated to the halo virial temperature. Collectively these properties result in stronger long-range impacts on the intergalactic medium when compared to TNG’s kinetic feedback mode, which drives isotropic winds with lower velocities at the galactic radius. Our results suggest that the low-redshift Lyαforest provides plausible evidence for long-range AGN jet feedback.

     
    more » « less
  2. ABSTRACT

    We examine the properties of damped Lyman-α absorbers (DLAs) emerging from a single set of cosmological initial conditions in two state-of-the-art cosmological hydrodynamic simulations: simba and technicolor dawn. The former includes star formation and black hole feedback treatments that yield a good match with low-redshift galaxy properties, while the latter uses multifrequency radiative transfer to model an inhomogeneous ultraviolet background (UVB) self-consistently and is calibrated to match the Thomson scattering optical depth, UVB amplitude, and Ly α forest mean transmission at z > 5. Both simulations are in reasonable agreement with the measured stellar mass and star formation rate functions at z ≥ 3, and both reproduce the observed neutral hydrogen cosmological mass density, $\Omega _{\rm H\, \small{I}}(z)$. However, the DLA abundance and metallicity distribution are sensitive to the galactic outflows’ feedback and the UVB amplitude. Adopting a strong UVB and/or slow outflows underproduces the observed DLA abundance, but yields broad agreement with the observed DLA metallicity distribution. By contrast, faster outflows eject metals to larger distances, yielding more metal-rich DLAs whose observational selection may be more sensitive to dust bias. The DLA metallicity distribution in models adopting an H2-regulated star formation recipe includes a tail extending to [M/H] ≪ −3, lower than any DLA observed to date, owing to curtailed star formation in low-metallicity galaxies. Our results show that DLA observations play an important role in constraining key physical ingredients in galaxy formation models, complementing traditional ensemble statistics such as the stellar mass and star formation rate functions.

     
    more » « less
  3. ABSTRACT We present a comparison of galaxy atomic and molecular gas properties in three recent cosmological hydrodynamic simulations, namely SIMBA, EAGLE, and IllustrisTNG, versus observations from z ∼ 0 to 2. These simulations all rely on similar subresolution prescriptions to model cold interstellar gas that they cannot represent directly, and qualitatively reproduce the observed z ≈ 0 H i and H2 mass functions (HIMFs and H2MFs, respectively), CO(1–0) luminosity functions (COLFs), and gas scaling relations versus stellar mass, specific star formation rate, and stellar surface density μ*, with some quantitative differences. To compare to the COLF, we apply an H2-to-CO conversion factor to the simulated galaxies based on their average molecular surface density and metallicity, yielding substantial variations in αCO and significant differences between models. Using this, predicted z = 0 COLFs agree better with data than predicted H2MFs. Out to z ∼ 2, EAGLE’s and SIMBA’s HIMFs and COLFs strongly increase, while IllustrisTNG’s HIMF declines and COLF evolves slowly. EAGLE and simba reproduce high-LCO(1–0) galaxies at z ∼ 1–2 as observed, owing partly to a median αCO(z = 2) ∼ 1 versus αCO(z = 0) ∼ 3. Examining H i, H2, and CO scaling relations, their trends with M* are broadly reproduced in all models, but EAGLE yields too little H i in green valley galaxies, IllustrisTNG and SIMBA overproduce cold gas in massive galaxies, and SIMBA overproduces molecular gas in small systems. Using SIMBA variants that exclude individual active galactic nucleus (AGN) feedback modules, we find that SIMBA’s AGN jet feedback is primarily responsible by lowering cold gas contents from z ∼ 1 → 0 by suppressing cold gas in $M_*\gtrsim 10^{10}{\rm \,M}_\odot$ galaxies, while X-ray feedback suppresses the formation of high-μ* systems. 
    more » « less
  4. ABSTRACT

    We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to $k \sim 10\, h$ Mpc−1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.

     
    more » « less
  5. ABSTRACT

    Known as the ‘Missing Baryon Problem’, about one-third of baryons in the local universe remain unaccounted for. The missing baryons are thought to reside in the warm–hot intergalactic medium (WHIM) of the cosmic web filaments, which are challenging to detect. Recent Chandra X-ray observations used a novel stacking analysis and detected an O vii absorption line towards the sightline of a luminous quasar, hinting that the missing baryons may reside in the WHIM. To explore how the properties of the O vii absorption line depend on feedback physics, we compare the observational results with predictions obtained from the Cosmology and Astrophysics with MachinE Learning (CAMEL) Simulation suite. CAMELS consists of cosmological simulations with state-of-the-art supernova (SN) and active galactic nuclei (AGNs) feedback models from the IllustrisTNG and SIMBA simulations, with varying strengths. We find that the simulated O vii column densities are higher in the outskirts of galaxies than in the large-scale WHIM, but they are consistently lower than those obtained in the Chandra observations, for all feedback runs. We establish that the O vii distribution is primarily sensitive to changes in the SN feedback prescription, whereas changes in the AGN feedback prescription have minimal impact. We also find significant differences in the O vii column densities between the IllustrisTNG and SIMBA runs. We conclude that the tension between the observed and simulated O vii column densities cannot be explained by the wide range of feedback models implemented in CAMELS.

     
    more » « less