skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The impact of frequently neglected model violations on bacterial recombination rate estimation: a case study in Mycobacterium canettii and Mycobacterium tuberculosis
Abstract Mycobacterium canettii is a causative agent of tuberculosis in humans, along with the members of the Mycobacterium tuberculosis complex. Frequently used as an outgroup to the M. tuberculosis complex in phylogenetic analyses, M. canettii is thought to offer the best proxy for the progenitor species that gave rise to the complex. Here, we leverage whole-genome sequencing data and biologically relevant population genomic models to compare the evolutionary dynamics driving variation in the recombining M. canettii with that in the nonrecombining M. tuberculosis complex, and discuss differences in observed genomic diversity in the light of expected levels of Hill–Robertson interference. In doing so, we highlight the methodological challenges of estimating recombination rates through traditional population genetic approaches using sequences called from populations of microorganisms and evaluate the likely mis-inference that arises owing to a neglect of common model violations including purifying selection, background selection, progeny skew, and population size change. In addition, we compare performance when full within-host polymorphism data are utilized, versus the more common approach of basing analyses on within-host consensus sequences.  more » « less
Award ID(s):
2045343
PAR ID:
10390244
Author(s) / Creator(s):
; ; ;
Editor(s):
Wong, A
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
12
Issue:
5
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Mycobacterium bovisandMycobacterium tuberculosisare the most relevant among pathogenic mycobacteria, both belonging to theM. tuberculosiscomplex (MTC). Samples of blood, liver, spleen, kidneys, lungs and caseous tubercles were collected from a free‐ranging juvenile black capuchin monkey (Sapajus nigritus) showing non‐specific signs of illness. Macroscopic findings included emaciation, a caseous lesion in a tooth and gingiva, disseminated nodules in both lungs and left kidney parenchyma and caseous nodules on the pleura and mesentery. The lesions suggested MTC infection, a diagnosis subsequently supported in the lung by bacilloscopy, immunochromatography and PCR. A multiplex PCR further validated the presence ofM. bovisgenes. Cases of tuberculosis in platyrrhine primates have only been reported in animals maintained in captivity. We describe for the first time the pathological and molecular findings ofM. bovisinfection in a free‐ranging platyrrhine monkey within an area of intense human–wildlife interaction, which has important implications from a One Health perspective. 
    more » « less
  2. Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation. The molecular mechanism by which TDM inhibits phagosome maturation has been elusive. We find that a clickable, photoaffinity TDM probe recapitulates key phenotypes of native TDM in macrophage host cells and binds several host Soluble N-ethylmaleimide-Sensitive Factor Attachment Proteins Receptor (SNARE) proteins, including Vesicle Transport through Interaction with t-SNAREs 1B (VTI1B), Syntaxin 8 (STX8), and Vesicle-Associated Membrane Protein 2 (VAMP2). VTI1B and STX8 normally promote endosome fusion by forming a complex with VAMP8. However, in the presence ofMycobacterium tuberculosis, VTI1B and STX8 complex with VAMP2, which in turn decreases VAMP8 binding. VAMP2 acts together with mycolate structure to inhibit phagosome maturation and promotes intracellularM. tuberculosisreplication. Thus one mechanism by which TDM constrains the innate immune response toM. tuberculosisis via noncanonical SNARE complexation. 
    more » « less
  3. Abstract Tuberculosis (TB), caused by the pathogenMycobacterium tuberculosis, affects millions of people worldwide. Several TB drugs have lost efficacy due to emerging drug resistance and new anti‐TB targets are needed. Recent research suggests that indole‐3‐glycerol phosphate synthase (IGPS) inM. tuberculosis(MtIGPS) could be such a target. IGPS is a (β/α)8‐barrel enzyme that catalyzes the conversion of 1‐(o‐carboxyphenylamino)‐1‐deoxyribulose 5’‐phosphate (CdRP) into indole‐glycerol‐phosphate (IGP) in the bacterial tryptophan biosynthetic pathway.M. tuberculosisover expresses the tryptophan pathway genes during an immune response and inhibition ofMtIGPS allows CD4 T‐cells to more effectively fight againstM. tuberculosis. Here we review the published data onMtIGPS expression, kinetics, mechanism, and inhibition. We also discussMtIGPS crystal structures and compare them to other IGPS structures to reveal potential structure‐function relationships of interest for the purposes of drug design and biocatalyst engineering. 
    more » « less
  4. ABSTRACT The success of Mycobacterium tuberculosis as a human pathogen is due in part to its ability to survive stress conditions, such as hypoxia or nutrient deprivation, by entering nongrowing states. In these low-metabolism states, M. tuberculosis can tolerate antibiotics and develop genetically encoded antibiotic resistance, making its metabolic adaptation to stress crucial for survival. Numerous bacteria, including M. tuberculosis , have been shown to reduce their rates of mRNA degradation under growth limitation and stress. While the existence of this response appears to be conserved across species, the underlying bacterial mRNA stabilization mechanisms remain unknown. To better understand the biology of nongrowing mycobacteria, we sought to identify the mechanistic basis of mRNA stabilization in the nonpathogenic model Mycobacterium smegmatis . We found that mRNA half-life was responsive to energy stress, with carbon starvation and hypoxia causing global mRNA stabilization. This global stabilization was rapidly reversed when hypoxia-adapted cultures were reexposed to oxygen, even in the absence of new transcription. The stringent response and RNase levels did not explain mRNA stabilization, nor did transcript abundance. This led us to hypothesize that metabolic changes during growth cessation impact the activities of degradation proteins, increasing mRNA stability. Indeed, bedaquiline and isoniazid, two drugs with opposing effects on cellular energy status, had opposite effects on mRNA half-lives in growth-arrested cells. Taken together, our results indicate that mRNA stability in mycobacteria is not directly regulated by growth status but rather is dependent on the status of energy metabolism. IMPORTANCE The logistics of tuberculosis therapy are difficult, requiring multiple drugs for many months. Mycobacterium tuberculosis survives in part by entering nongrowing states in which it is metabolically less active and thus less susceptible to antibiotics. Basic knowledge on how M. tuberculosis survives during these low-metabolism states is incomplete, and we hypothesize that optimized energy resource management is important. Here, we report that slowed mRNA turnover is a common feature of mycobacteria under energy stress but is not dependent on the mechanisms that have generally been postulated in the literature. Finally, we found that mRNA stability and growth status can be decoupled by a drug that causes growth arrest but increases metabolic activity, indicating that mRNA stability responds to metabolic status rather than to growth rate per se . Our findings suggest a need to reorient studies of global mRNA stabilization to identify novel mechanisms that are presumably responsible. 
    more » « less
  5. Wong, A (Ed.)
    Abstract Bacteriophages infecting pathogenic hosts play an important role in medical research, not only as potential treatments for antibiotic-resistant infections but also offering novel insights into pathogen genetics and evolution. A prominent example is cluster K mycobacteriophages infecting Mycobacterium tuberculosis, a causative agent of tuberculosis in humans. However, as handling M. tuberculosis as well as other pathogens in a laboratory remains challenging, alternative nonpathogenic relatives, such as Mycobacterium smegmatis, are frequently used as surrogates to discover therapeutically relevant bacteriophages in a safer environment. Consequently, the individual host ranges of the majority of cluster K mycobacteriophages identified to date remain poorly understood. Here, we characterized the complete genome of Stinson, a temperate subcluster K1 mycobacteriophage with a siphoviral morphology. A series of comparative genomic analyses revealed strong similarities with other cluster K mycobacteriophages, including the conservation of an immunity repressor gene and a toxin/antitoxin gene pair. Patterns of codon usage bias across the cluster offered important insights into putative host ranges in nature, highlighting that although all cluster K mycobacteriophages are able to infect M. tuberculosis, they are less likely to have shared an evolutionary infection history with Mycobacterium leprae (underlying leprosy) compared to the rest of the genus’ host species. Moreover, subcluster K1 mycobacteriophages are able to integrate into the genomes of Mycobacterium abscessus and Mycobacterium marinum—two bacteria causing pulmonary and cutaneous infections which are often difficult to treat due to their drug resistance. 
    more » « less