skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Inferring population connectivity in eastern m assasauga rattlesnakes ( S istrurus c atenatus ) using landscape genetics

Assessing the environmental factors that influence the ability of a threatened species to move through a landscape can be used to identify conservation actions that connect isolated populations. However, direct observations of species' movement are often limited, making the development of alternate approaches necessary. Here we use landscape genetic analyses to assess the impact of landscape features on the movement of individuals between local populations of a threatened snake, the eastern massasauga rattlesnake (Sistrurus catenatus). We linked connectivity data with habitat information from two landscapes of similar size: a large region of unfragmented habitat and a previously studied fragmented landscape consisting of isolated patches of habitat. We used this analysis to identify features of the landscape where modification or acquisition would enhance population connectivity in the fragmented region. We found evidence that current connectivity was impacted by both contemporary land‐cover features, especially roads, and inherent landscape features such as elevation. Next, we derived estimates of expected movement ability using a recently developed pedigree‐based approach and least‐cost paths through the unfragmented landscape. We then used our pedigree and resistance map to estimate resistance polygons of the potential extent forS. catenatusmovement in the fragmented landscape. These polygons identify possible sites for future corridors connecting currently isolated populations in this landscape by linking the impact of future habitat modification or land acquisition to dispersal ability in this species. Overall, our study shows how modeling landscape resistance across differently fragmented landscapes can identify habitat features that affect contemporary movement in threatened species in fragmented landscapes and how this information can be used to guide mitigation actions whose goal is to connect isolated populations.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Managing endangered species in fragmented landscapes requires estimating dispersal rates between populations over contemporary timescales. Here, we developed a new method for quantifying recent dispersal using genetic pedigree data for close and distant kin. Specifically, we describe an approach that infers missing shared ancestors between pairs of kin in habitat patches across a fragmented landscape. We then applied a stepping‐stone model to assign unsampled individuals in the pedigree to probable locations based on minimizing the number of movements required to produce the observed locations in sampled kin pairs. Finally, we used all pairs of reconstructed parent‐offspring sets to estimate dispersal rates between habitat patches under a Bayesian model. Our approach measures connectivity over the timescale represented by the small number of generations contained within the pedigree and so is appropriate for estimating the impacts of recent habitat changes due to human activity. We used our method to estimate recent movement between newly discovered populations of threatened Eastern Massasauga rattlesnakes (Sistrurus catenatus) using data from 2996 RAD‐based genetic loci. Our pedigree analyses found no evidence for contemporary connectivity between five genetic groups, but, as validation of our approach, showed high dispersal rates between sample sites within a single genetic cluster. We conclude that these five genetic clusters of Eastern Massasauga rattlesnakes have small numbers of resident snakes and are demographically isolated conservation units. More broadly, our methodology can be widely applied to determine contemporary connectivity rates, independent of bias from shared genetic similarity due to ancestry that impacts other approaches.

    more » « less
  2. Abstract

    Landscape features often shape patterns of gene flow and genetic differentiation in plant species. Populations that are small and isolated enough also become subject to genetic drift. We examined patterns of gene flow and differentiation among 12 floodplain populations of the selfing annual jewelweed (Impatiens capensisMeerb.) nested within four river systems and two major watersheds in Wisconsin, USA. Floodplain forests and marshes provide a model system for assessing the effects of habitat fragmentation within agricultural/urban landscapes and for testing whether rivers act to genetically connect dispersed populations. We generated a panel of 12,856 single nucleotide polymorphisms and assessed genetic diversity, differentiation, gene flow, and drift. Clustering methods revealed strong population genetic structure with limited admixture and highly differentiated populations (mean multilocusFST = 0.32,FST’ = 0.33). No signals of isolation by geographic distance or environment emerged, but alleles may flow along rivers given that genetic differentiation increased with river distance. Differentiation also increased in populations with fewer private alleles (R2 = 0.51) and higher local inbreeding (R2 = 0.22). Populations varied greatly in levels of local inbreeding (FIS = 0.2–0.9) andFISincreased in more isolated populations. These results suggest that genetic drift dominates other forces in structuring theseImpatienspopulations. In rapidly changing environments, species must migrate or genetically adapt. Habitat fragmentation limits both processes, potentially compromising the ability of species to persist in fragmented landscapes.

    more » « less
  3. Abstract Background

    Understanding how to connect habitat remnants to facilitate the movement of species is a critical task in an increasingly fragmented world impacted by human activities. The identification of dispersal routes and corridors through connectivity analysis requires measures of landscape resistance but there has been no consensus on how to calculate resistance from habitat characteristics, potentially leading to very different connectivity outcomes.


    We propose a new model, called the Time-Explicit Habitat Selection (TEHS) model, that can be directly used for connectivity analysis. The TEHS model decomposes the movement process in a principled approach into a time and a selection component, providing complementary information regarding space use by separately assessing the drivers of time to traverse the landscape and the drivers of habitat selection. These models are illustrated using GPS-tracking data from giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil.


    The time model revealed that the fastest movements tended to occur between 8 p.m. and 5 a.m., suggesting a crepuscular/nocturnal behavior. Giant anteaters moved faster over wetlands while moving much slower over forests and savannas, in comparison to grasslands. We also found that wetlands were consistently avoided whereas forest and savannas tended to be selected. Importantly, this model revealed that selection for forest increased with temperature, suggesting that forests may act as important thermal shelters when temperatures are high. Finally, using the spatial absorbing Markov chain framework, we show that the TEHS model results can be used to simulate movement and connectivity within a fragmented landscape, revealing that giant anteaters will often not use the shortest-distance path to the destination patch due to avoidance of certain habitats.


    The proposed approach can be used to characterize how landscape features are perceived by individuals through the decomposition of movement patterns into a time and a habitat selection component. Additionally, this framework can help bridge the gap between movement-based models and connectivity analysis, enabling the generation of time-explicit connectivity results.

    more » « less
  4. Abstract

    Maintaining the ability of organisms to move between suitable patches of habitat despite ongoing habitat loss is essential to conserving biodiversity. Quantifying connectivity has therefore become a central focus of conservation planning. A large number of metrics have been developed to estimate potential connectivity based on habitat configuration, matrix structure and information on organismal movement, and it is often assumed that metrics explain actual connectivity. Yet, validation of metrics is rare, particularly across entire landscapes undergoing habitat loss—a crucial problem that connectivity conservation aims to mitigate.

    We leveraged a landscape‐scale habitat loss and fragmentation experiment to assess the performance of commonly used patch‐ and landscape‐scale connectivity metrics against observed movement data, test whether incorporating information about the matrix improves connectivity metrics and examine the performance of metrics across a gradient of habitat loss. We tested whether 38 connectivity metrics predict movement at the patch (i.e. patch immigration rates) and landscape (i.e., total movements) scale for a pest insect, the cactus bugChelinidea vittiger, across 15 replicate landscapes.

    Metrics varied widely in their ability to explain actual connectivity. At the patch scale, dPCflux, which describes the contribution of a patch to movement across the landscape independent of patch size, best explained immigration rates. At the landscape scale, total movements were best explained by a mesoscale metric that captures that distance between clusters of patches (i.e. modules). Incorporating the matrix did not necessarily improve the ability of metrics to predict actual connectivity. Across the habitat loss gradient, dPCfluxwas sensitive to habitat amount.

    Synthesis and applications. Our study provides a much‐needed evaluation of network connectivity metrics at the patch and landscape scales, emphasizing that accurate quantification of connectivity requires the incorporation, not only of habitat amount but also habitat configuration and information on dispersal capability of species. We suggest that variation in habitat may often be more critical for interpreting network connectivity than the matrix, and advise that connectivity metrics may be sensitive to habitat loss and should therefore be applied with caution to highly fragmented landscapes. Finally, we recommend that applications integrate mesoscale configuration of habitat into connectivity strategies.

    more » « less
  5. Abstract

    Habitat fragmentation remains a major focus of research by ecologists decades after being put forward as a threat to the integrity of ecosystems. While studies have documented myriad biotic changes in fragmented landscapes, including the local extinction of species from fragments, the demographic mechanisms underlying these extinctions are rarely known. However, many of them—especially in lowland tropical forests—are thought to be driven by one of two mechanisms: (1) reduced recruitment in fragments resulting from changes in the diversity or abundance of pollinators and seed dispersers or (2) increased rates of individual mortality in fragments due to dramatically altered abiotic conditions, especially near fragment edges. Unfortunately, there have been few tests of these potential mechanisms due to the paucity of long‐term and comprehensive demographic data collected in both forest fragments and continuous forest sites. Here we report 11 years (1998–2009) of demographic data from populations of the Amazonian understory herbHeliconia acuminata(LC Rich.) found at Brazil's Biological Dynamics of Forest Fragments Project (BDFFP). The data set comprises >66,000 plant × year records of 8586 plants, including 3464 seedlings established after the first census. Seven populations were in experimentally isolated fragments (one in each of four 1‐ha fragments and one in each of three 10‐ha fragments), with the remaining six populations in continuous forest. Each population was in a 50 × 100 m permanent plot, with the distance between plots ranging from 500 m to 60 km. The plants in each plot were censused annually, at which time we recorded, identified, marked, and measured new seedlings, identified any previously marked plants that died, and recorded the size of surviving individuals. Each plot was also surveyed four to five times during the flowering season to identify reproductive plants and record the number of inflorescences each produced. These data have been used to investigate topics ranging from the way fragmentation‐related reductions in germination influence population dynamics to statistical methods for analyzing reproductive rates. This breadth of prior use reflects the value of these data to future researchers. In addition to analyses of plant responses to habitat fragmentation, these data can be used to address fundamental questions in plant demography and the evolutionary ecology of tropical plants and to develop and test demographic models and tools. Though we welcome opportunities to collaborate with interested users, there are no restrictions on the use of this data set. However, we do request that those using the data for teaching or research purposes inform us of how they are doing so and cite this paper and the data archive when appropriate. Any publication using the data must also include a BDFFP Technical Series Number in the Acknowledgments. Authors can request this series number upon the acceptance of their article by contacting the BDFFP's Scientific Coordinator or E. M. Bruna.

    more » « less