- PAR ID:
- 10390376
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 394
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Portable smartphone-based fluorescent microscopes are becoming popular owing to their ability to provide major functionalities offered by regular benchtop microscopes at a fraction of the cost. However, smartphone-based microscopes are still limited to a single fluorophore, fixed magnification, the inability to work with a different smartphones, and limited usability to either glass slides or cover slips. To overcome these challenges, here we present a modular smartphone-based microscopic attachment. The modular design allows the user to easily swap between different sets of filters and lenses, thereby enabling utility of multiple fluorophores and magnification levels. Our microscopic smartphone attachment can also be used with different smartphones and was tested with Nokia Lumia 1020, Samsung Galaxy S9+, and an iPhone XS. Further, we showed imaging results of samples on glass slides, cover slips, and microfluidic devices. A 1951 USAF resolution test target was used to quantify the maximum resolution of the microscope which was found to be 3.9 μm. The performance of the smartphone-based microscope was compared with a benchtop microscope and we found an R 2 value of 0.99 using polystyrene beads and blood cells isolated from human blood samples collected from Robert Wood Johnson Medical Hospital. Additionally, to count the particles (cells and beads) imaged from the smartphone-based fluorescent microscope, we developed artificial neural networks (ANNs) using multiple training algorithms, and evaluated their performances compared to the control (ImageJ). Finally, we did ANOVA and Tukey's post-hoc analysis and found a p -value of 0.97 which shows that no statistical significant difference exists between the performance of the trained ANN and control (ImageJ).more » « less
-
Platelet separation is a crucial step for both blood donation and treatment of essential thrombocytosis. Here we present an acoustofluidic device that is capable of performing high-throughput, biocompatible platelet separation using sound waves. The device is entirely made of plastic material, which renders the device disposable and more suitable for clinical use. We used this device to process undiluted human whole blood, and we demonstrate a sample throughput of 20 mL min −1 , a platelet recovery rate of 87.3%, and a red/white blood cell removal rate of 88.9%. We preserved better platelet function and integrity for isolated platelets than those which are isolated using established methods. Our device features advantages such as rapid fabrication, high throughput, and biocompatibility, so it is a promising alternative to existing platelet separation approaches.more » « less
-
Abstract Water quality is undergoing significant deterioration due to bacteria, pollutants and other harmful particles, damaging aquatic life and lowering the quality of drinking water. It is, therefore, important to be able to rapidly and accurately measure water quality in a cost-effective manner using e.g., a turbidimeter. Turbidimeters typically use different illumination angles to measure the scattering and transmittance of light through a sample and translate these readings into a measurement based on the standard nephelometric turbidity unit (NTU). Traditional turbidimeters have high sensitivity and specificity, but they are not field-portable and require electricity to operate in field settings. Here we present a field-portable and cost effective turbidimeter that is based on a smartphone. This mobile turbidimeter contains an opto-mechanical attachment coupled to the rear camera of the smartphone, which contains two white light-emitting-diodes to illuminate the water sample, optical fibers to transmit the light collected from the sample to the camera, an external lens for image formation, and diffusers for uniform illumination of the sample. Including the smartphone, this cost-effective device weighs only ~350 g. In our mobile turbidimeter design, we combined two illumination approaches: transmittance, in which the optical fibers were placed directly below the sample cuvette at 180° with respect to the light source, and nephelometry in which the optical fibers were placed on the sides of the sample cuvette at a 90°angle with respect to the to the light source. Images of the end facets of these fiber optic cables were captured using the smart phone and processed using a custom written image processing algorithm to automatically quantify the turbidity of each sample. Using transmittance and nephelometric readings, our mobile turbidimeter achieved accurate measurements over a large dynamic range, from 0.3 NTU to 2000 NTU. The accurate performance of our smartphone-based turbidimeter was also confirmed with various water samples collected in Los Angeles (USA), bacteria spiked water samples, as well as diesel fuel contaminated water samples. Having a detection limit of ~0.3 NTU, this cost-effective smartphone-based turbidimeter can be a useful analytical tool for screening of water quality in resource limited settings.
-
A novel electrochemical glucose sensor was created for a simple but semiquantitative visual screening of specific glucose concentrations in urine. This noninvasive glucose biosensor integrated a disposable, paper-based sensing strip and a simple amplifier circuit with a visual readout. The paper strip consisted of five enzyme-activated electrodes. Each electrode was connected to a specific indicator circuit that triggered a light-emitting diode (LED) when a predefined glucose concentration was reached. The device features (1) low-cost, disposable, paper-based glucose oxidase (GOx)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) sensing electrodes, (2) simple signal amplification, and (3) on-site, rapid, and visual detection. The sensor generated reliable, discrete visual responses to determine five glucose levels (1, 2, 3, 4, and higher than 4 mM) in urine in less than 2 min. This innovative approach will provide a simple but powerful glucose sensing paradigm for use in POC diagnostics.