skip to main content

Title: Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots
BACKGROUND Evaluating effects of global warming from rising atmospheric carbon dioxide (CO 2 ) concentrations requires resolving the processes that drive Earth’s carbon stocks and flows. Although biogeomorphic wetlands (peatlands, mangroves, salt marshes, and seagrass meadows) cover only 1% of Earth’s surface, they store 20% of the global organic ecosystem carbon. This disproportionate share is fueled by high carbon sequestration rates per unit area and effective storage capacity, which greatly exceed those of oceanic and forest ecosystems. We highlight that feedbacks between geomorphology and landscape-building wetland vegetation underlie these critical qualities and that disruption of these biogeomorphic feedbacks can switch these systems from carbon sinks into sources. ADVANCES A key advancement in understanding wetland functioning has been the recognition of the role of reciprocal organism-landform interactions, “biogeomorphic feedbacks.” Biogeomorphic feedbacks entail self-reinforcing interactions between biota and geomorphology, by which organisms—often vegetation—engineer landforms to their own benefit following a positive density-dependent relationship. Vegetation that dominates major carbon-storing wetlands generate self-facilitating feedbacks that shape the landscape and amplify carbon sequestration and storage. As a result, per unit area, wetland carbon stocks and sequestration rates greatly exceed those of terrestrial forests and oceans, ecosystems that worldwide harbor large stocks because of their large more » areal extent. Worldwide biogeomorphic wetlands experience human-induced average annual loss rates of around 1%. We estimate that associated carbon losses amount to 0.5 Pg C per year, levels that are equivalent to 5% of the estimated overall anthropogenic carbon emissions. Because carbon emissions from degraded wetlands are often sustained for centuries until all organic matter has been decomposed, conserving and restoring biogeomorphic wetlands must be part of global climate solutions. OUTLOOK Our work highlights that biogeomorphic wetlands serve as the world’s biotic carbon hotspots, and that conservation and restoration of these hotspots offer an attractive contribution to mitigate global warming. Recent scientific findings show that restoration methods aimed at reestablishing biogeomorphic feedbacks can greatly increase establishment success and restoration yields, paving the way for large-scale restoration actions. Therefore, we argue that implementing such measures can facilitate humanity in its pursuit of targets set by the Paris Agreement and the United Nations Decade on Ecosystem Restoration. Carbon storage in biogeomorphic wetlands. Organic carbon ( A ) stocks, ( B ) densities, and ( C ) sequestration rates in the world’s major carbon-storing ecosystems. Oceans hold the largest stock, peatlands (boreal, temperate, and tropical aggregated) store the largest amount per unit area, and coastal ecosystems (mangroves, salt marshes, and seagrasses aggregated) support the highest sequestration rates. ( D and E ) Biogeomorphic feedbacks, indicated with arrows, can be classified as productivity stimulating or decomposition limiting. Productivity-stimulating feedbacks increase resource availability and thus stimulate vegetation growth and organic matter production. Although production is lower in wetlands with decomposition-limiting feedbacks, decomposition is more strongly limited, resulting in net accumulation of organic matter. (D) In fens, organic matter accumulation from vascular plants is amplified by productivity-stimulating feedbacks. Once the peat rises above the groundwater and is large enough to remain waterlogged by retaining rainwater, the resulting bog maintains being waterlogged and acidic, resulting in strong decomposition-limiting feedbacks. (E) Vegetated coastal ecosystems generate productivity-stimulating feedbacks that enhance local production and trapping of external organic matter. « less
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1832178
Publication Date:
NSF-PAR ID:
10390588
Journal Name:
Science
Volume:
376
Issue:
6593
ISSN:
0036-8075
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal forested wetlands support many endemic species, sequester substantial carbon stocks, and have been reduced in extent due to historic drainage and agricultural expansion. Many of these unique coastal ecosystems have been drained, while those that remain are now threatened by saltwater intrusion and sea level rise in hydrologically modified coastal landscapes. Several recent studies have documented rapid and accelerating losses of coastal forested wetlands in small areas of the Atlantic and Gulf coasts of North America, but the full extent of loss across North America’s Coastal Plain (NACP) has not been quantified. We used classified satellite imagery to document a net loss of  13,682 km2 (8%) of forested coastal wetlands across the NACP between 1996 and 2016. Most forests transitioned to scrub-shrub (53%) and marsh habitats (24%). Even within protected areas, we measured substantial rates of wetland deforestation and significant fragmentation of forested wetland habitats. Variation in the rate of sea level rise, the number of tropical storm landings, and the average elevation of coastal watersheds explained about 78% of the variation in coastal wetland deforestation extent along the south Atlantic and Gulf Coasts. The rate of coastal forest loss within the NACP (684 km2/y) exceeds the recentmore »estimate of global losses of coastal mangroves (210 km2/y). At the current rate of deforestation, in the absence of widespread protection or restoration efforts, coastal forested wetlands may not persist into the next century.« less
  2. Abstract

    Mangroves cover less than 0.1% of Earth’s surface, store large amounts of carbon per unit area, but are threatened by global environmental change. The capacity of mangroves productivity could be characterized by their canopy greenness, but this property has not been systematically tested across gradients of mangrove forests and national scales. Here, we analyzed time series of Normalized Difference Vegetation Index (NDVI), mean air temperature and total precipitation between 2001 and 2015 (14 years) to quantify greenness and climate variability trends for mangroves not directly influenced by land use/land cover change across Mexico. Between 2001 and 2015 persistent mangrove forests covered 432 800 ha, representing 57% of the total current mangrove area for Mexico. We found a temporal greenness increase between 0.003[0.001–0.004]and 0.004[0.002–0.005]yr−1(NDVI values ± 95%CI) for mangroves located over the Gulf of California and the Pacific Coast, with many mangrove areas dominated byAvicennia germinans.Mangroves developed along the Gulf of Mexico and Caribbean Sea did not show significant greenness trends, but site-specific areas showed significant negative greenness trends. Mangroves with surface water input have above ground carbon stocks (AGC) between 37.7 and 221.9 Mg C ha−1and soil organic carbon density at 30 cm depth (SOCD) between 92.4 and 127.3 Mg Cmore »ha−1. Mangroves with groundwater water input have AGC of 12.7 Mg C ha−1and SOCD of 219 Mg C ha−1. Greenness and climate variability trends could not explain the spatial variability in carbon stocks for most mangrove forests across Mexico. Site-specific characteristics, including mangrove species dominance could have a major influence on greenness trends. Our findings provide a baseline for national-level monitoring programs, carbon accounting models, and insights for greenness trends that could be tested around the world.

    « less
  3. Abstract

    Wetland soils are a key global sink for organic carbon (C) and a focal point for C management and accounting efforts. The ongoing push for wetland restoration presents an opportunity for climate mitigation, but C storage expectations are poorly defined due to a lack of reference information and an incomplete understanding of what drives natural variability among wetlands. We sought to address these shortcomings by (1) quantifying the range of variability in wetland soil organic C (SOC) stocks on a depressional landscape (Delmarva Peninsula, USA) and (2) investigating the role of hydrology and relative topography in explaining variability among wetlands. We found a high degree of variability within individual wetlands and among wetlands with similar vegetation and hydrogeomorphic characteristics. This suggests that uncertainty should be presented explicitly when inferring ecosystem processes from wetland types or land cover classes. Differences in hydrologic regimes, particularly the rate of water level recession, explained some of the variability among wetlands, but relationships between SOC stocks and some hydrologic metrics were eclipsed by factors associated with separate study sites. Relative topography accounted for a similar portion of SOC stock variability as hydrology, indicating that it could be an effective substitute in large-scale analyses. Asmore »wetlands worldwide are restored and focus increases on quantifying C benefits, the importance of appropriately defining and assessing reference systems is paramount. Our results highlight the current uncertainty in this process, but suggest that incorporating landscape heterogeneity and drivers of natural variability into reference information may improve how wetland restoration is implemented and evaluated.

    « less
  4. Naturally formed forest patches known as tree islands are found within lower-statured wetland matrices throughout the world, where they contrast sharply with the surrounding vegetation. In some coastal wetlands they are embedded in former freshwater marshes that are currently exposed to saltwater intrusion and mangrove encroachment associated with accelerating sea-level rise. In this study we resurveyed tree composition and determined environmental conditions in tree islands of the coastal Florida Everglades that had been examined two decades earlier. We asked whether tree islands in this coastal transition zone were differentiated geomorphologically as well as compositionally, and whether favorable geomorphology enabled coastal forest type(s) to maintain their compositional integrity against rising seas. Patterns of variation in geomorphology and soils among forest types were evident, but were dwarfed by differences between forest and adjacent wetlands. Tree island surfaces were elevated by 12–44 cm, and 210Pb analyses indicated that their current rates of vertical accretion were more rapid than those of surrounding ecosystems. Tree island soils were deeper and more phosphorus-rich than in the adjoining matrix. Salinity decreased interiorward in both tree island and marsh, but porewater was fresher in forest than marsh in Mixed Swamp Forest, midway along the coastal gradient where tropicalmore »hardwoods were most abundant. Little decrease in the abundance of tropical hardwood species nor increase in halophytes was observed during the study period. Our data suggest that geomorphological differences between organic tree island and marl marsh, perhaps driven by groundwater upwelling through more transmissive tree island soils, contributed to the forests’ compositional stability, though this stasis may be short-lived despite management efforts.« less
  5. Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m−2 year−1; FAQ = 317 ± 186 gC m−2 year−1). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = −366 ± 15 gC m−2 year−1; FAQ = 311 ± 30 gC m−2 year−1) and elevated salinity (NECB = −594 ± 94 gC m−2 year−1; FAQ = 729 ± 142 gC m−2 year−1) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primarymore »productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150–1070 gC m−2 year−1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management.« less