skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protons: Critical Species for Resistive Switching in Interface‐Type Memristors
Abstract Interface‐type (IT) resistive switching (RS) memories are promising for next generation memory and computing technologies owing to the filament‐free switching, high on/off ratio, low power consumption, and low spatial variability. Although the switching mechanisms of memristors have been widely studied in filament‐type devices, they are largely unknown in IT memristors. In this work, using the simple Au/Nb:SrTiO3(Nb:STO) as a model Schottky system, it is identified that protons from moisture are key element in determining the RS characteristics in IT memristors. The Au/Nb:STO devices show typical Schottky interface controlled current–voltage (I–V) curves with a large on/off ratio under ambient conditions. Surprisingly, in a controlled environment without protons/moisture, the largeI–Vhysteresis collapses with the disappearance of a high resistance state (HRS) and the Schottky barrier. Once the devices are re‐exposed to a humid environment, the typical largeI–Vhysteresis can be recovered within hours as the HRS and Schottky interface are restored. The RS mechanism in Au/Nb:STO is attributed to the Schottky barrier modulation by a proton assisted electron trapping and detrapping process. This work highlights the important role of protons/moisture in the RS properties of IT memristors and provides fundamental insight for switching mechanisms in metal oxides‐based memory devices.  more » « less
Award ID(s):
1809520 1902644 1902623
PAR ID:
10390618
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
9
Issue:
1
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interface‐type (IT) metal/oxide Schottky memristive devices have attracted considerable attention over filament‐type (FT) devices for neuromorphic computing because of their uniform, filament‐free, and analog resistive switching (RS) characteristics. The most recent IT devices are based on oxygen ions and vacancies movement to alter interfacial Schottky barrier parameters and thereby control RS properties. However, the reliability and stability of these devices have been significantly affected by the undesired diffusion of ionic species. Herein, a reliable interface‐dominated memristive device is demonstrated using a simple Au/Nb‐doped SrTiO3(Nb:STO) Schottky structure. The Au/Nb:STO Schottky barrier modulation by charge trapping and detrapping is responsible for the analog resistive switching characteristics. Because of its interface‐controlled RS, the proposed device shows low device‐to‐device, cell‐to‐cell, and cycle‐to‐cycle variability while maintaining high repeatability and stability during endurance and retention tests. Furthermore, the Au/Nb:STO IT memristive device exhibits versatile synaptic functions with an excellent uniformity, programmability, and reliability. A simulated artificial neural network with Au/Nb:STO synapses achieves a high recognition accuracy of 94.72% for large digit recognition from MNIST database. These results suggest that IT resistive switching can be potentially used for artificial synapses to build next‐generation neuromorphic computing. 
    more » « less
  2. Abstract Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface‐type memristors based on ferroelectric materials are emerging as alternatives in the development of high‐performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance. 
    more » « less
  3. null (Ed.)
    Here, in ionically conducting Na 0.5 Bi 0.5 TiO 3 (NBT), we explore the link between growth parameters, stoichiometry and resistive switching behavior and show NBT to be a highly tunable system. We show that the combination of oxygen ionic vacancies and low-level electronic conduction is important for controlling Schottky barrier interfacial switching. We achieve a large ON/OFF ratio for high resistance/low resistance ( R HRS / R LRS ), enabled by an almost constant R HRS of ∼10 9 Ω, and composition-tunable R LRS value modulated by growth temperature. R HRS / R LRS ratios of up to 10 4 and pronounced resistive switching at low voltages (SET voltage of <1.2 V without high-voltage electroforming), strong endurance (no change in resistance states after several 10 3 cycles), uniformity, stable switching and fast switching speed are achieved. Of particular interest is that the best performance is achieved at the lowest growth temperature studied (600 °C), which is opposite to the case of most other perovskite oxides for memristors, where higher growth temperatures are required for optimum performance. This is understood based on the oxygen vacancy control of interfacial switching in NBT, whereas a range of other mechanisms (including filamentary switching) occur in other perovskites. The study of NBT has enabled us to determine key parameters for achieving high performance memristors. 
    more » « less
  4. Abstract Carbon doped two-dimensional (2D) hexagonal boron nitride nanosheets (BNNSs) are obtained through a CO 2 —pulsed laser deposition (CO 2 —PLD) technique on silicon dioxide (SiO 2 ) or molybdenum (Mo) substrates, showing - stable hysteresis characteristics over a wide range of temperatures, which makes them a promising candidate for materials based on non-volatile memory devices. This innovative material with electronic properties of n-type characterized in the form of back-to-back Schottky diodes appears to have special features that can enhance the device performance and data retention due to its functional properties, thermal-mechanical stability, and its relation with resistive switching phenomena. It can also be used to eliminate sneak current in resistive random-access memory devices in a crossbar array. In this sense constitutes a good alternative to design two series of resistance-switching Schottky barrier models in the gold/BNNS/gold and gold/BNNS/molybdenum structures; thus, symmetrical and non-symmetrical characteristics are shown at low and high bias voltages as indicated by the electrical current-voltage (I–V) curves. On the one hand, the charge recombination caused by thermionic emission does not significantly change the rectification characteristics of the diode, only its hysteresis properties change due to the increase in external voltage in the Schottky junctions. The addition of carbon to BNNSs creates boron vacancies that exhibit partially ionic character, which also helps to enhance its electrical properties at the metal-BNNS-metal interface. 
    more » « less
  5. The major focus of artificial intelligence (AI) research is made on biomimetic synaptic processes that are mimicked by functional memory devices in the computer industry [1]. It is urgent to find a memory technology for suiting with Brain-Inspired Computing to break the von Neumann bottleneck which limits the efficiency of conventional computer architectures [2]. Silicon-based flash memory, which currently dominates the market for data storage devices, is facing challenging issues to meet the needs of future data storage device development due to the limitations, such as high-power consumption, high operation voltage, and low retention capacity [1]. The emerging resistive random-access memory (RRAM) has elicited intense research as its simple sandwiched structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer, can store data using RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). This class of emerging devices is expected to outperform conventional memory devices [3]. Specifically, the advantages of RRAM include low-voltage operation, short programming time, great cyclic stability, and good scalability [4]. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has attracted attention because of its abundance and high atomic diffusion property of oxygen atoms, transparency, and its easily modulated electrical properties by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas [5, 6]. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, the IGZO-based fully integrated transparent electronics are very promising [5]. In this work, we proposed transparent IGZO-based RRAMs. First, we chose ITO to serve as both TE and BE to achieve high transmittance in the visible regime of light. All three layers (TE, RS, BE layers) were deposited using a multi-target magnetron sputtering system on glass substrates to demonstrate fully transparent oxide-based devices. I-V characteristics were evaluated by a semiconductor parameter analyzer, and our devices showed typical butterfly curves indicating the bipolar RS property. And the IGZO-based RRAM can survive more than 50 continuous sweeping cycles. The optical transmission analysis was carried out via an UV-Vis spectrometer and the average transmittance around 80% out of entire devices in the visible-light wavelength range, implying high transparency. To investigate the thickness dependence on the properties of RS layer, 50nm, 100nm and 150nm RS layer of IGZO RRAM were fabricated. Also, the oxygen partial pressure during the sputtering of IGZO was varied to optimize the property because the oxygen vacancy concentration governs the RS and RRAM performance. Electrode selection is crucial and can impact the performance of the whole device [7]. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation the conductive filament (CF). Finally, a ~5 nm SiO2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. In conclusion, the transparent IGZO-based RRAMs were established. To tune the property of RS layer, the thickness layer and sputtering conditions of RS were adjusted. In order to engineer the diffusion capability of the TE material to the RS layer and the BE, a set of TE materials and a barrier layer were integrated in IGZO-based RRAM and the performance was compared. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and overcoming the bottleneck of current memory technologies. 
    more » « less