skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enemy release from beech bark disease coincides with upslope shift of American beech
Upslope shifts in plant distributions are often attributed to warming climate and lengthening of the growing season; however, biotic interactions may also contribute. The impacts of pests and pathogens are often sensitive to climate change and can vary along the climatic gradient associated with elevation. American beech ( Fagus grandifolia) has moved upslope throughout the northeastern United States. Meanwhile, beech growth and longevity have decreased as a result of beech bark disease (BBD), a decline disease caused by the introduced European felted beech scale insect ( Cryptococcus fagisuga) and native fungi from the genus Neonectria. Within a forested landscape spanning 250–1150 m elevation, we examined the relationships between elevation, beech demography and BBD to explore whether release from BBD at higher elevation may contribute to the upslope expansion of beech. Beech has shifted upslope at a rate of 1 m⋅year −1 coincident with lower mortality, higher recruitment, faster growth, lower BBD severity, and higher sapling densities at higher elevations. We suggest that climatic constraints on the beech scale insect at high elevations has led to a lower impact of BBD, which contributed to higher rates of beech growth, survival, and recruitment and in turn facilitated the regional upslope shift of beech.  more » « less
Award ID(s):
1637685
PAR ID:
10390818
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Canadian Journal of Forest Research
Volume:
52
Issue:
9
ISSN:
0045-5067
Page Range / eLocation ID:
1224 to 1233
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. Here, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low‐elevation provenance had more than three‐fold greater recruitment to their third year than seeds from a high‐elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low‐ and high‐elevation seed sources across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long‐term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low‐elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. Our results show that ecotypes from lower elevations within a species’ range could enhance recruitment and facilitate upslope range shifts with climate change. 
    more » « less
  2. Abstract The complex effects of global environmental changes on ecosystems result from the interaction of multiple stressors, their direct impacts on species and their indirect impacts on species interactions. Air pollution (and resulting depletion of soil base cations) and biotic invasion (e.g. beech bark disease [BBD] complex) are two stressors that are affecting the foundational tree species of northern hardwood forests, sugar maple and American beech, in northeastern North America.At the Hubbard Brook Experimental Forest in New Hampshire, a watershed‐scale calcium (Ca) addition in 1999 restored soil Ca that had been lost as a result of acid deposition in a maple‐beech forest that was severely affected by BBD beginning in the 1970s. We present historic data from the reference watershed for BBD progression, 20 years of comparative forest data from the treated and reference watersheds, and tree demographic rates for the most recent decade. We hypothesized that mitigation of soil acidification on the treated watershed in the presence of BBD would favour improved performance of sugar maple, a species that is particularly sensitive to base cation depletion.We observed significant responses of seed production, seedling bank composition, sapling survival and recruitment, and tree mortality and growth to the restoration of soil Ca, indicating that acid rain depletion of soil base cations has influenced demographic rates of maple and beech. Overall, the reduced performance of sugar maple on acidified soils may indirectly favour the persistence of diseased beech trees and a greater abundance of beech vegetative sprouts, effectively promoting the chronic presence of severe BBD in the population.Synthesis. The shifting conditions created by global change have altered long‐term demographic rates and may thereby impact competitive interactions in the current centre of these species ranges and have more profound implications for species persistence and migration potential than previously anticipated. 
    more » « less
  3. Abstract Elevational and latitudinal gradients in species diversity may be mediated by biotic interactions that cause density‐dependent effects of conspecifics on survival or growth to differ from effects of heterospecifics (i.e. conspecific density dependence), but limited evidence exists to support this. We tested the hypothesis that conspecific density dependence varies with elevation using over 40 years of data on tree survival and growth from 23 old‐growth temperate forest stands across a 1,000‐m elevation gradient. We found that conspecific‐density‐dependent effects on survival of small‐to‐intermediate‐sized focal trees were negative in lower elevation, higher diversity forest stands typically characterised by warmer temperatures and greater relative humidity. Conspecific‐density‐dependent effects on survival were less negative in higher elevation stands and ridges than in lower elevation stands and valley bottoms for small‐to‐intermediate‐sized trees, but were neutral for larger trees across elevations. Conspecific‐density‐dependent effects on growth were negative across all tree size classes and elevations. These findings reveal fundamental differences in biotic interactions that may contribute to relationships between species diversity, elevation and climate. 
    more » « less
  4. Marine organisms frequently inhabit intertidal zones that serve as refuges from predation and competition but are not optimal physiologically. Restoration practitioners working with intertidal species may similarly have to consider whether restoration success will be greater where conditions are more benign (usually lower in the intertidal) or where negative biotic interactions are reduced (usually higher in the intertidal). In cases where a target species has greater desiccation tolerance than its enemies, restoration may be more successful higher in the intertidal zone, despite potential performance trade-offs. In many US West Coast estuaries, non-native drill species can decimate native oyster populations, posing a challenge to restoration. Given that native Olympia oystersOstrea luridashould be better able to withstand tidal emersion than the non-native Atlantic oyster drillUrosalpinx cinerea, we explored using the high intertidal as a refuge from predation as a potential restoration technique. Using surveys and a field experiment, we investigated the recruitment, growth, and survival of oysters as well as drill abundance and predation over 3 tidal elevations. Oysters recruited and survived equally well at +0.1, +0.5, and +0.8 m mean lower low water, but juvenile oyster growth decreased with increasing elevation. In our experiment, predation on oysters was lower at the highest elevation than at low and mid elevations, but in natural populations there was a near complete absence ofO. luridaat any elevation whereU. cinereawas present. This suggests that a higher tidal elevation refuge is not a viable approach for oyster restoration in our study area. 
    more » « less
  5. Tropical pollinators are expected to experience substantial effects due to climate change, but aspects of their thermal biology remain largely unknown. We investigated the thermal tolerance of stingless honey-making bees, the most ecologically, economically and culturally important group of tropical pollinators. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of 17 species (12 genera) at two elevations (200 and 1500 m) in the Colombian Andes. In addition, we examined the influence of body size (intertegular distance, ITD), hairiness (thoracic hair length) and coloration (lightness value) on bees’ thermal tolerance. Because stingless beekeepers often relocate their colonies across the altitudinal gradient, as an initial attempt to explore potential social responses to climatic variability, we also tracked for several weeks brood temperature and humidity in nests of three species at both elevations. We found that CTMin decreased with elevation while CTMax was similar between elevations. CTMin and CTMax increased (low cold tolerance and high heat tolerance) with increasing ITD, hair length and lightness value, but these relationships were weak and explained at most 10% of the variance. Neither CTMin nor CTMax displayed significant phylogenetic signal. Brood nest temperature tracked ambient diel variations more closely in the low-elevation site, but it was constant and higher at the high-elevation site. In contrast, brood nest humidity was uniform throughout the day regardless of elevation. The stronger response in CTMin, and a similar CTMax between elevations, follows a pattern of variation documented across a wide range of taxa that is commonly known as the Brett’s heat-invariant hypothesis. Our results indicate differential thermal sensitivities and potential thermal adaptations to local climate, which support ongoing conservation policies to restrict the long-distance relocations of colonies. They also shed light on how malleable nest thermoregulation can be across elevations. 
    more » « less