skip to main content


Title: Projected Changes in Future Extreme Precipitation over the Northeast United States in the NA-CORDEX Ensemble
Abstract

The northeastern United States (NEUS) is a densely populated region with a number of major cities along the climatological storm track. Despite its economic and social importance, as well as the area’s vulnerability to flooding, there is significant uncertainty around future trends in extreme precipitation over the region. Here, we undertake a regional study of the projected changes in extreme precipitation over the NEUS through the end of the twenty-first century using an ensemble of high-resolution, dynamically downscaled simulations from the North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) project. We find that extreme precipitation increases throughout the region, with the largest changes in coastal regions and smaller changes inland. These increases are seen throughout the year, although the smallest changes in extreme precipitation are seen in the summer, in contrast to earlier studies. The frequency of heavy precipitation also increases such that there are relatively fewer days with moderate precipitation and relatively more days with either no or strong precipitation. Averaged over the region, extreme precipitation increases by +3%–5% °C−1of local warming, with the largest fractional increases in southern and inland regions and occurring during the winter and spring seasons. This is lower than the +7% °C−1rate expected from thermodynamic considerations alone and suggests that dynamical changes damp the increases in extreme precipitation. These changes are qualitatively robust across ensemble members, although there is notable intermodel spread associated with models’ climate sensitivity and with changes in mean precipitation. Together, the NA-CORDEX simulations suggest that this densely populated region may require significant adaptation strategies to cope with the increase in extreme precipitation expected at the end of the next century.

Significance Statement

Observations show that the northeastern United States has already experienced increases in extreme precipitation, and prior modeling studies suggest that this trend is expected to continue through the end of the century. Using high-resolution climate model simulations, we find that coastal regions will experience large increases in extreme precipitation (+6.0–7.5 mm day−1), although there is significant intermodel spread in the trends’ spatial distribution and in their seasonality. Regionally averaged, extreme precipitation will increase at a rate of ∼2% decade−1. Our results also suggest that the frequency of extreme precipitation will increase, with the strongest storms doubling in frequency per degree of warming. These results, taken with earlier studies, provide guidance to aid in resiliency preparation and planning by regional stakeholders.

 
more » « less
NSF-PAR ID:
10390893
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
61
Issue:
11
ISSN:
1558-8424
Format(s):
Medium: X Size: p. 1649-1668
Size(s):
["p. 1649-1668"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Northern Mexico is home to more than 32 million people and is of significant agricultural and economic importance for the country. The region includes three distinct hydroclimatic regions, all of which regularly experience severe dryness and flooding and are highly susceptible to future changes in precipitation. To date, little work has been done to characterize future trends in either mean or extreme precipitation over northern Mexico. To fill this gap, we investigate projected precipitation trends over the region in the NA-CORDEX ensemble of dynamically downscaled simulations. We first verify that these simulations accurately reproduce observed precipitation over northern Mexico, as derived from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) product, demonstrating that the NA-CORDEX ensemble is appropriate for studying precipitation trends over the region. By the end of the century, simulations forced with a high-emissions scenario project that both mean and extreme precipitation will decrease to the west and increase to the east of the Sierra Madre highlands, decreasing the zonal gradient in precipitation. We also find that the North American monsoon, which is responsible for a substantial fraction of the precipitation over the region, is likely to start later and last approximately three weeks longer. The frequency of extreme precipitation events is expected to double throughout the region, exacerbating the flood risk for vulnerable communities in northern Mexico. Collectively, these results suggest that the extreme precipitation-related dangers that the region faces, such as flooding, will increase significantly by the end of the century, with implications for the agricultural sector, economy, and infrastructure.

    Significance Statement

    Northern Mexico regularly experiences severe flooding and its important agricultural sector can be heavily impacted by variations in precipitation. Using high-resolution climate model simulations that have been tested against observations, we find that these hydroclimate extremes are likely to be exacerbated in a warming climate; the dry (wet) season is projected to receive significantly less (more) precipitation (approximately ±10% by the end of the century). Simulations suggest that some of the changes in precipitation over the region can be related to the North American monsoon, with the monsoon starting later in the year and lasting several weeks longer. Our results also suggest that the frequency of extreme precipitation will increase, although this increase is smaller than that projected for other regions, with the strongest storms becoming 20% more frequent per degree of warming. These results suggest that this region may experience significant changes to its hydroclimate through the end of the century that will require significant resilience planning.

     
    more » « less
  2. Abstract

    To better understand the role projected land‐use changes (LUCs) may play in future regional climate projections, we assess the combined effects of greenhouse‐gas (GHG)‐forced climate change and LUCs in regional climate model (RCM) simulations. To do so, we produced RCM simulations that are complementary to the North‐American Coordinated Regional Downscaling Experiment (NA‐CORDEX) simulations, but with future LUCs that are consistent with particular Shared Socioeconomic Pathways (SSPs) and related to a specific Representative Concentration Pathway (RCP). We examine the state of the climate at the end of the 21st century with and without two urban and agricultural LUC scenarios that follow SSP3 and SSP5 using the Weather Research and Forecasting (WRF) model forced by one global climate model, the MPI‐ESM, under the RCP8.5 scenario. We find that LUCs following different societal trends under the SSPs can significantly affect climate projections in different ways. In regions of significant cropland expansion over previously forested area, projected annual mean temperature increases are diminished by around 0.5°C–1.0°C. Across all seasons, where urbanization is high, projected temperature increases are magnified. In particular, summer mean temperature projections are up to 4°C–5°C greater and minimum and maximum temperature projections are increased by 2.5°C–6°C, amounts that are on par with the warming due to GHG‐forced climate change. Warming is also enhanced in the urban surroundings. Future urbanization also has a large influence on precipitation projections during summer, increasing storm intensity, event length, and the overall amount over urbanized areas, and decreasing precipitation in surrounding areas.

     
    more » « less
  3. Abstract

    Climate model projections of atmospheric circulation patterns, their frequency, and associated temperature and precipitation anomalies under a high-end global warming scenario are assessed over the Pacific Northwest of North America for the final three decades of the twenty-first century. Model simulations are from phase 6 of the Coupled Model Intercomparison Project (CMIP6) and circulation patterns are identified using the self-organizing maps (SOMs) approach, applied to 500-hPa geopotential height (Z500) anomalies. Overall, the range of projected circulation patterns is similar to that in the current climate, especially in winter, whereas in summer the models project a general reduction in the magnitude of Z500 anomalies. Significant changes in pattern frequencies are also projected in summer, with an overall decrease in the frequency of patterns with large Z500 anomalies. In winter, patterns historically associated with anomalously cold weather in northern latitudes are projected to warm the most, and in summer the largest temperature increases are projected over inland areas. Precipitation is found to increase across all seasons and most SOM patterns. However, some summer patterns that are associated with above-average precipitation in the current climate are projected to become significantly drier by the end of the century.

    Significance Statement

    This paper uses a novel method to analyze projections of large-scale atmospheric circulation over the Pacific Northwest of North America, reducing the uncertainty of changes to the circulation patterns over the region under a high-emissions scenario of global warming.

     
    more » « less
  4. Abstract

    Accumulating evidence on the impact of climate change on droughts, highlights the necessity for developing effective adaptation and mitigation strategies. Changes in future drought risk and severity in Australia are quantified by analyzing nine Coupled Model Intercomparison Project Phase 6 climate models. Historic conditions (1981–2014) and projections for mid-century (2015–2050) and end-century (2051–2100) from four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) are examined. Drought events are identified using both the standardized precipitation index and the standardized precipitation evapotranspiration index. The spatial-temporal evolution of droughts is addressed by quantifying the areal extent of regions under moderate, severe and extreme drought from historic to end-century periods. Drought characteristics derived from the models are used to develop severity–duration–frequency curves using an extreme value analysis method based on ordinary events. Under SSP5-8.5, a tenfold increase in the area subject to extreme droughts is projected by the end of the century, while a twofold increase is projected under SSP1-2.6. Increase in extreme droughts frequency is found to be more pronounced in the southern and western regions of Australia. For example, frequency analysis of 12 month duration droughts for the state of South Australia indicates that, under SSP5-8.5, drought severities currently expected to happen on average only once in 100 years could happen as often as once in 3 years by the end of the century, with a 33 times higher risk (from 1% to 33%), while under SSP1-2.6, the increase is fivefold (1%–5%). The significant difference in the increase of drought risk between the two extreme scenarios highlights the urge to reduce greenhouse gases emission in order to avoid extreme drought conditions to become the norm by the end of the century.

     
    more » « less
  5. Abstract Daily precipitation extremes are projected to intensify with increasing moisture under global warming following the Clausius-Clapeyron (CC) relationship at about $$ 7\% /^\circ {\text{C}} $$ 7 % / ∘ C . However, this increase is not spatially homogeneous. Projections in individual models exhibit regions with substantially larger increases than expected from the CC scaling. Here, we leverage theory and observations of the form of the precipitation probability distribution to substantially improve intermodel agreement in the medium to high precipitation intensity regime, and to interpret projected changes in frequency in the Coupled Model Intercomparison Project Phase 6. Besides particular regions where models consistently display super-CC behavior, we find substantial occurrence of super-CC behavior within a given latitude band when the multi-model average does not require that the models agree point-wise on location within that band. About 13% of the globe and almost 25% of the tropics (30% for tropical land) display increases exceeding 2CC. Over 40% of tropical land points exceed 1.5CC. Risk-ratio analysis shows that even small increases above CC scaling can have disproportionately large effects in the frequency of the most extreme events. Risk due to regional enhancement of precipitation scale increase by dynamical effects must thus be included in vulnerability assessment even if locations are imprecise. 
    more » « less