skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: BoxCARS 2D IR spectroscopy with pulse shaping
BoxCARS and pump-probe geometries are common implementations of two-dimensional infrared (2D IR) spectroscopy. BoxCARS is background-free, generally offering greater signal-to-noise ratio, which enables measuring weak vibrational echo signals. Pulse shapers have been implemented in the pump-probe geometry to accelerate data collection and suppress scatter and other unwanted signals by precise control of the pump-pulse delay and carrier phase. Here, we introduce a 2D-IR optical setup in the BoxCARS geometry that implements a pulse shaper for rapid acquisition of background-free 2D IR spectra. We show a signal-to-noise improvement using this new fast-scan BoxCARS setup versus the pump-probe geometry within the same configuration.  more » « less
Award ID(s):
1847199
PAR ID:
10390911
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
2
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 2700
Size(s):
Article No. 2700
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) with a broadband, continuum probe pulse pair in the pump-probe geometry. The approach combines a pump pulse pair generated by an acousto-optic pulse-shaper with precise control of the relative pump pulse phase and time delay with a broadband, continuum probe pulse pair created using the Translating Wedge-based Identical pulses eNcoding System (TWINS). The continuum probe expands the spectral range of the detection axis and lengthens the waiting times that can be accessed in comparison to implementations of F-2DES using a single pulse-shaper. We employ phase-cycling of the pump pulse pair and take advantage of the separation of signals in the frequency domain to isolate rephasing and non-rephasing signals and optimize the signal-to-noise ratio. As proof of principle, we demonstrate broadband F-2DES on a laser dye and bacteriochlorophylla. 
    more » « less
  2. Two-dimensional electronic spectroscopy (2D-ES) has become an important technique for studying energy transfer, electronic coupling, and electronic–vibrational coherence in the past ten years. However, since 2D-ES is not interface specific, the electronic information at surfaces and interfaces could not be demonstrated clearly. Two-dimensional electronic sum-frequency generation (2D-ESFG) is an emerging spectroscopic technique that explores the correlations between different interfacial electronic transitions and is the extension of 2D-ES to surface and interfacial specificity. In this work, we present the detailed development and implementation of phase-cycling 2D-ESFG spectroscopy using an acousto-optic pulse shaper in a pump–probe geometry. With the pulse pair generated by a pulse shaper rather than optical devices based on birefringence or interference, this 2D-ESFG setup enables rapid scanning, phase cycling, and the separation of rephasing and nonrephasing signals. In addition, by collecting data in a rotating frame, we greatly improve experimental efficiency. We demonstrate the method for azo-derivative molecules at the air/water interface. This method could be readily extended to different interfaces and surfaces. The unique phase-cycling 2D-ESFG technique enables one to quantify the energy transfer, charge transfer, electronic coupling, and many other electronic properties and dynamics at surfaces and interfaces with precision and relative ease of use. Our goal in this article is to present the fine details of the fourth-order nonlinear optical technique in a manner that is comprehensive, succinct, and approachable such that other researchers can implement, improve, and adapt it to probe unique and innovative problems to advance the field. 
    more » « less
  3. Being able to image chemical bonds with high sensitivity and speed, stimulated Raman scattering (SRS) microscopy has made a major impact in biomedical optics. However, it is well known that the standard SRS microscopy suffers from various backgrounds, limiting the achievable contrast, quantification and sensitivity. While many frequency-modulation (FM) SRS schemes have been demonstrated to retrieve the sharp vibrational contrast, they often require customized laser systems and/or complicated laser pulse shaping or introduce additional noise, thereby hindering wide adoption. Herein we report a simple but robust strategy for FM-SRS microscopy based on a popular commercial laser system and regular optics. Harnessing self-phase modulation induced self-balanced spectral splitting of picosecond Stokes beam propagating in standard single-mode silica fibers, a high-performance FM-SRS system is constructed without introducing any additional signal noise. Our strategy enables adaptive spectral resolution for background-free SRS imaging of Raman modes with different linewidths. The generality of our method is demonstrated on a variety of Raman modes with effective suppressing of backgrounds including non-resonant cross phase modulation and electronic background from two-photon absorption or pump-probe process. As such, our method is promising to be adopted by the SRS microscopy community for background-free chemical imaging. 
    more » « less
  4. We propose a measurement of laser-induced vacuum birefringence through the use of pulsed lasers coupled to femtosecond optical enhancement cavities. This measurement technique features cavity-enhanced pump and probe pulses, as well as an independent control pulse. The control pulse allows for a differential measurement where the final signal is obtained using high-frequency lock-in detection, greatly mitigating time-dependent cavity birefringence as an important and possibly prohibitive systematic effect. In addition, the method features the economical use of laser power and results in a relatively simple experimental setup. 
    more » « less
  5. A major limitation of transient optical spectroscopy is that relatively high laser fluences are required to enable broadband, multichannel detection with acceptable signal-to-noise levels. Under typical experimental conditions, many condensed phase and nanoscale materials exhibit fluence-dependent dynamics, including higher order effects such as carrier–carrier annihilation. With the proliferation of commercial laser systems, offering both high repetition rates and high pulse energies, have come new opportunities for high sensitivity pump-probe measurements at low pump fluences. However, experimental considerations needed to fully leverage the statistical advantage of these laser systems have not been fully described. Here, we demonstrate a high repetition rate, broadband transient spectrometer capable of multichannel shot-to-shot detection at 90 kHz. Importantly, we find that several high-speed cameras exhibit a time-domain fixed pattern noise resulting from interleaved analog-to-digital converters, which is particularly detrimental to the conventional “ON/OFF” modulation scheme used in pump-probe spectroscopy. Using a modified modulation and data processing scheme, we achieve a noise level of 10−5 in 4 s for differential transmission, an order of magnitude lower than for commercial 1 kHz transient spectrometers for the same acquisition time. We leverage the high sensitivity of this system to measure the differential transmission of monolayer graphene at low pump fluence. We show that signals on the order of 10−6 OD can be measured, enabling a new data acquisition regime for low-dimensional materials. 
    more » « less