Wave‐particle resonant interaction is a key process controlling energetic electron flux dynamics in the Earth's radiation belts. All existing radiation belt codes are Fokker‐Planck models relying on the quasi‐linear diffusion theory to describe the impact of wave‐particle interactions. However, in the outer radiation belt, spacecraft often detect waves sufficiently intense to interact resonantly with electrons in the nonlinear regime. In this study, we propose an approach for estimating and including the contribution of such nonlinear resonant interactions into diffusion‐based radiation belt models. We consider electron resonances with whistler‐mode wave‐packets responsible for injected plasma sheet (∼100 keV) electron acceleration to relativistic energies and/or for their precipitation into the atmosphere. Using statistics of chorus wave‐packet amplitudes and sizes (number of wave periods within one packet), we provide a rescaling factor for quasi‐linear diffusion rates, that accounts for the contribution of nonlinear interactions in long‐term electron flux dynamics. Such nonlinear effects may speed up 0.1–1 MeV electron diffusive acceleration by a factor of ×1.5–2 during disturbed periods. We discuss further applications of the proposed approach and the importance of nonlinear resonant interactions for long‐term radiation belt dynamics.
Electron diffusion by whistler‐mode chorus waves is one of the key processes controlling the dynamics of relativistic electron fluxes in the Earth's radiation belts. It is responsible for the acceleration of sub‐relativistic electrons injected from the plasma sheet to relativistic energies as well as for their precipitation and loss into the atmosphere. Based on analytical estimates of chorus wave‐driven quasi‐linear electron energy and pitch‐angle diffusion rates, we provide analytical steady‐state solutions to the corresponding Fokker‐Planck equation for the relativistic electron distribution and flux. The impact on these steady‐state solutions of additional electromagnetic ion cyclotron waves, and of ultralow frequency waves are examined. Such steady‐state solutions correspond to hard energy spectra at 1–4 MeV, dangerous for satellite electronics, and represent attractors for the system dynamics in the presence of sufficiently strong driving by continuous injections of 10–300 keV electrons. Therefore, these analytical steady‐state solutions provide a simple means for estimating the most extreme electron energy spectra potentially encountered in the outer radiation belt, despite the great variability of injections and plasma conditions. These analytical steady‐state solutions are compared with numerical simulations based on the full Fokker‐Planck equation and with relativistic electron flux spectra measured by satellites during one extreme event and three strong events of high time‐integrated geomagnetic activity, demonstrating a good agreement.
more » « less- NSF-PAR ID:
- 10390947
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 127
- Issue:
- 11
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Many spacecraft fly within or through a natural and variable particle accelerator powered by the coupling between the magnetosphere and the solar wind: the Earth’s radiation belts. Determining the dominant pathways to plasma energization is a central challenge for radiation belt science and space weather alike. Inward radial transport from an external source was originally thought to be the most important acceleration process occurring in the radiation belts. Yet, when modeling relied on a radial diffusion equation including electron lifetimes, notable discrepancies in model-observation comparisons highlighted a need for improvement. Works by Professor Richard M. Thorne and others showed that energetic (hundreds of keV) electrons interacting with whistler-mode chorus waves could be efficiently accelerated to very high energies. The same principles were soon transposed to understand radiation belt dynamics at Jupiter and Saturn. These results led to a paradigm shift in our understanding of radiation belt acceleration, supported by observations of a growing peak in the radial profile of the phase space density for the most energetic electrons of the Earth’s outer belt. Yet, quantifying the importance of local acceleration at the gyroscale, versus large-scale acceleration associated with radial transport, remains controversial due to various sources of uncertainty. The objective of this review is to provide context to understand the variety of challenges associated with differentiating between the two main radiation belt acceleration processes: radial transport and local acceleration. Challenges range from electron flux measurement analysis to radiation belt modeling based on a three-dimensional Fokker-Planck equation. We also provide recommendations to inform future research on radiation belt radial transport and local acceleration.more » « less
-
Abstract In the Earth's radiation belts, an upper limit on the electron flux is expected to be imposed by the Kennel‐Petschek mechanism, through the generation of exponentially more intense whistler‐mode waves as the trapped flux increases above this upper limit, leading to fast electron pitch‐angle diffusion and precipitation into the atmosphere. Here, we examine a different upper limit, corresponding to a dynamical equilibrium in the presence of energetic electron injections and both pitch‐angle and energy diffusion by whistler‐mode chorus waves. We first show that during sustained injections, the electron flux energy spectrum tends toward a steady‐state attractor resulting from combined chorus wave‐driven energy and pitch‐angle diffusion. We derive simple analytical expressions for this steady‐state energy spectrum in a wide parameter range, in agreement with simulations. Approximate analytical expressions for the corresponding equilibrium upper limit on the electron flux are provided as a function of the strength of energetic electron injections from the plasma sheet. The analytical steady‐state energy spectrum is also compared with maximum electron fluxes measured in the outer radiation belt during several geomagnetic storms with strong injections, showing a good agreement at 100–600 keV.
-
Abstract We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or
) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$\Delta L\sim 0.56$ at dusk, while a smaller subset exists at$L\sim 5-7$ at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L\sim 8-12$ -shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$L$ MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.$\sim 1.45$ -
Abstract A self-consistent hybrid model of standing and moving striations was developed for low-current DC discharges in noble gases. We introduced the concept of surface diffusion in phase space (r,u) (where u denotes the electron kinetic energy) described by a tensor diffusion in the nonlocal Fokker-Planck kinetic equation for electrons in the collisional plasma. Electrons diffuse along surfaces of constant total energy ε=u-eφ(r) between energy jumps in inelastic collisions with atoms. Numerical solutions of the 1d1u kinetic equation for electrons were obtained by two methods and coupled to ion transport and Poisson solver. We studied the dynamics of striation formation in Townsend and glow discharges in Argon gas at low discharge currents using a two-level excitation-ionization model and a “full-chemistry” model, which includes stepwise and Penning ionization. Standing striations appeared in Townsend and glow discharges at low currents, and moving striations were obtained for the discharge currents exceeding a critical value. These waves originate at the anode and propagate towards the cathode. We have seen two types of moving striations with the 2-level and full-chemistry models, which resemble the s and p striations previously observed in the experiments. Simulations indicate that processes in the anode region could control moving striations in the positive column plasma. The developed model helps clarify the nature of standing and moving striations in DC discharges of noble gases at low discharge currents and low gas pressures.more » « less