skip to main content


Title: Measuring Photon Rings with the ngEHT
General relativity predicts that images of optically thin accretion flows around black holes should generically have a “photon ring”, composed of a series of increasingly sharp subrings that correspond to increasingly strongly lensed emission near the black hole. Because the effects of lensing are determined by the spacetime curvature, the photon ring provides a pathway to precise measurements of the black hole properties and tests of the Kerr metric. We explore the prospects for detecting and measuring the photon ring using very long baseline interferometry (VLBI) with the Event Horizon Telescope (EHT) and the next-generation EHT (ngEHT). We present a series of tests using idealized self-fits to simple geometrical models and show that the EHT observations in 2017 and 2022 lack the angular resolution and sensitivity to detect the photon ring, while the improved coverage and angular resolution of ngEHT at 230 GHz and 345 GHz is sufficient for these models. We then analyze detection prospects using more realistic images from general relativistic magnetohydrodynamic simulations by applying “hybrid imaging”, which simultaneously models two components: a flexible raster image (to capture the direct emission) and a ring component. Using the Bayesian VLBI modeling package Comrade.jl, we show that the results of hybrid imaging must be interpreted with extreme caution for both photon ring detection and measurement—hybrid imaging readily produces false positives for a photon ring, and its ring measurements do not directly correspond to the properties of the photon ring.  more » « less
Award ID(s):
2034306 1935980
NSF-PAR ID:
10390981
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Galaxies
Volume:
10
Issue:
6
ISSN:
2075-4434
Page Range / eLocation ID:
111
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The direct detection of a bright, ring-like structure in horizon-resolving images of M87* by the Event Horizon Telescope (EHT) is a striking validation of general relativity. The angular size and shape of the ring is a degenerate measure of the location of the emission region, mass, and spin of the black hole. However, we show that the observation of multiple rings, corresponding to the low-order photon rings, can break this degeneracy and produce mass and spin measurements independent of the shape of the rings. We describe two potential experiments that would measure the spin. In the first, observations of the direct emission and n = 1 photon ring are made at multiple epochs with different emission locations. This method is conceptually similar to spacetime constraints that arise from variable structures (or hot spots) in that it breaks the near-perfect degeneracy between emission location, mass, and spin for polar observers using temporal variability. In the second, observations of the direct emission and n = 1 and n = 2 photon rings are made during a single epoch. For both schemes, additional observations comprise a test of general relativity. Thus, comparisons of EHT observations in 2017 and 2018 may be capable of producing the first horizon-scale spin estimates of M87* inferred from strong lensing alone. Additional observation campaigns from future high-frequency, Earth-sized, and space-based radio interferometers can produce high-precision tests of general relativity. 
    more » « less
  2. Context. High-frequency very-long-baseline interferometry (VLBI) observations can now resolve the event-horizon-scale emission from sources in the immediate vicinity of nearby supermassive black holes. Future space-VLBI observations will access highly lensed features of black hole images – photon rings – that will provide particularly sharp probes of strong-field gravity. Aims. Focusing on the particular case of the supermassive black hole M 87*, our goal is to explore a wide variety of accretion flows onto a Kerr black hole and to understand their corresponding images and visibilities. We are particularly interested in the visibility on baselines to space, which encodes the photon ring shape and whose measurement could provide a stringent test of the Kerr hypothesis. Methods. We developed a fully analytical model of stationary, axisymmetric accretion flows with a variable disk thickness and a matter four-velocity that can smoothly interpolate between purely azimuthal rotation and purely radial infall. To determine the observational appearance of such flows, we numerically integrated the general-relativistic radiative transfer equation in the Kerr spacetime, taking care to include the effects of thermal synchrotron emission and absorption. We then Fourier transformed the resulting images and analyzed their visibility amplitudes along the directions parallel and orthogonal to the black hole spin projected on the observer sky. Results. Our images generically display a wedding cake structure composed of discrete, narrow photon rings ( n  = 1, 2, …) stacked on top of broader primary emission that surrounds a central brightness depression of model-dependent size. At 230 GHz, the n  = 1 ring is always visible, but the n  = 2 ring is sometimes suppressed due to absorption. At 345 GHz, the medium is optically thinner and the n  = 2 ring displays clear signatures in both the image and visibility domains. We also examine the thermal synchrotron emissivity in the equatorial plane and show that it exhibits an exponential dependence on the radius for the preferred M 87* parameters. Conclusions. The black hole shadow is a model-dependent phenomenon – even for diffuse, optically thin sources – and should not be regarded as a generic prediction of general relativity. Observations at 345 GHz are promising for future space-VLBI measurements of the photon ring shape, since at this frequency the signal of the n  = 2 ring persists despite the disk thickness and nonzero absorption featured in our models. Future work is needed to investigate whether this conclusion holds in a larger variety of reasonable models. 
    more » « less
  3. Abstract

    Images of supermassive black hole accretion flows contain features of both curved spacetime and plasma structure. Inferring properties of the spacetime from images requires modeling the plasma properties, and vice versa. The Event Horizon Telescope Collaboration has imaged near-horizon millimeter emission from both Messier 87* (M87*) and Sagittarius A* (Sgr A*) with very long baseline interferometry (VLBI) and has found a preference for magnetically arrested disk (MAD) accretion in each case. MAD accretion enables spacetime measurements through future observations of the photon ring, the image feature composed of near-orbiting photons. The ordered fields and relatively weak Faraday rotation of MADs yield rotationally symmetric polarization when viewed at modest inclination. In this letter, we utilize this symmetry along with parallel transport symmetries to construct a gain-robust interferometric quantity that detects the transition between the weakly lensed accretion flow image and the strongly lensed photon ring. We predict a shift in polarimetric phases on long baselines and demonstrate that the photon rings in M87* and Sgr A* can be unambiguously detected with sensitive, long-baseline measurements. For M87*, we find that photon ring detection in snapshot observations requires ∼1 mJy sensitivity on >15 Gλbaselines at 230 GHz and above, which could be achieved with space-VLBI or higher-frequency ground-based VLBI. For Sgr A*, we find that interstellar scattering inhibits photon ring detectability at 230 GHz, but ∼10 mJy sensitivity on >12 Gλbaselines at 345 GHz is sufficient and is accessible from the ground. For both sources, these sensitivity requirements may be relaxed by repeated observations and averaging.

     
    more » « less
  4. The landmark black hole images recently taken by the Event Horizon Telescope (EHT) have allowed the detailed study of the immediate surroundings of supermassive black holes (SMBHs) via direct imaging. These tantalizing early results motivate an expansion of the array, its instrumental capabilities, and dedicated long-term observations to resolve and track faint dynamical features in the black hole jet and accretion flow. The next-generation Event Horizon Telescope (ngEHT) is a project that plans to double the number of telescopes in the VLBI array and extend observations to dual-frequency 230 + 345 GHz, improving total and snapshot coverage, as well as observational agility. The Large Millimeter Telescope (LMT) is the largest sub-mm single dish telescope in the world at 50 m in diameter, and both its sensitivity and central location within the EHT array make it a key anchor station for the other telescopes. In this work, we detail current and planned future upgrades to the LMT that will directly impact its Very Large Baseline Interferometry (VLBI) performance for the EHT and ngEHT. These include the commissioning of a simultaneous 230 + 345 GHz dual-frequency, dual-polarization heterodyne receiver, improved real-time surface measurement and setting, and improvements to thermal stability, which should enable expanded daytime operation. We test and characterize the performance of an improved LMT joining future ngEHT observations through simulated observations of Sgr A* and M 87. 
    more » « less
  5. We present a case for significantly enhancing the utility and efficiency of the ngEHT by incorporating an additional 86 GHz observing band. In contrast to 230 or 345 GHz, weather conditions at the ngEHT sites are reliably good enough for 86 GHz to enable year-round observations. Multi-frequency imaging that incorporates 86 GHz observations would sufficiently augment the (u,v) coverage at 230 and 345 GHz to permit detection of the M87 jet structure without requiring EHT stations to join the array. The general calibration and sensitivity of the ngEHT would also be enhanced by leveraging frequency phase transfer techniques, whereby simultaneous observations at 86 GHz and higher-frequency bands have the potential to increase the effective coherence times from a few seconds to tens of minutes. When observation at the higher frequencies is not possible, there are opportunities for standalone 86 GHz science, such as studies of black hole jets and spectral lines. Finally, the addition of 86 GHz capabilities to the ngEHT would enable it to integrate into a community of other VLBI facilities—such as the GMVA and ngVLA—that are expected to operate at 86 GHz but not at the higher ngEHT observing frequencies. 
    more » « less