Abstract Subclinical leaflet thrombosis (SLT) is a potentially serious complication of aortic valve replacement with a bioprosthetic valve in which blood clots form on the replacement valve. SLT is associated with increased risk of transient ischemic attacks and strokes and can progress to clinical leaflet thrombosis. SLT following aortic valve replacement also may be related to subsequent structural valve deterioration, which can impair the durability of the valve replacement. Because of the difficulty in clinical imaging of SLT, models are needed to determine the mechanisms of SLT and could eventually predict which patients will develop SLT. To this end, we develop methods to simulate leaflet thrombosis that combine fluid–structure interaction and a simplified thrombosis model that allows for deposition along the moving leaflets. Additionally, this model can be adapted to model deposition or absorption along other moving boundaries. We present convergence results and quantify the model's ability to realize changes in valve opening and pressures. These new approaches are an important advancement in our tools for modeling thrombosis because they incorporate both adhesion to the surface of the moving leaflets and feedback to the fluid–structure interaction.
more »
« less
Patient–Specific Immersed Finite Element–Difference Model of Transcatheter Aortic Valve Replacement
Abstract Transcatheter aortic valve replacement (TAVR) first received FDA approval for high-risk surgical patients in 2011 and has been approved for low-risk surgical patients since 2019. It is now the most common type of aortic valve replacement, and its use continues to accelerate. Computer modeling and simulation (CM&S) is a tool to aid in TAVR device design, regulatory approval, and indication in patient-specific care. This study introduces a computational fluid-structure interaction (FSI) model of TAVR with Medtronic’s CoreValve Evolut R device using the immersed finite element-difference (IFED) method. We perform dynamic simulations of crimping and deployment of the Evolut R, as well as device behavior across the cardiac cycle in a patient-specific aortic root anatomy reconstructed from computed tomography (CT) image data. These IFED simulations, which incorporate biomechanics models fit to experimental tensile test data, automatically capture the contact within the device and between the self-expanding stent and native anatomy. Further, we apply realistic driving and loading conditions based on clinical measurements of human ventricular and aortic pressures and flow rates to demonstrate that our Evolut R model supports a physiological diastolic pressure load and provides informative clinical performance predictions.
more »
« less
- PAR ID:
- 10391001
- Date Published:
- Journal Name:
- Annals of Biomedical Engineering
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 0090-6964
- Page Range / eLocation ID:
- 103 to 116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Transcatheter aortic valve replacement (TAVR) has become a popular treatment option for severe aortic stenosis (AS) patients who present a high risk for mortality should they receive a surgical aortic valve replacement (SAVR). Coronary artery occlusion (CAO) following the implantation of the device is a potential complication with a high mortality rate, as CAO causes a deterioration of coronary perfusion, followed by cardiogenic shock and electrical instability. Due to this dangerous potential complication, bailout percutaneous coronary intervention (PCI) techniques, like the snorkel and chimney techniques, have been developed as an effective strategy for ensuring coronary perfusion is maintained following a TAVR procedure. Both snorkel and chimney techniques have been implemented in a reanimated swine and human heart respectively utilizing Visible Heart® methodologies. The procedures have been recorded utilizing endoscopic cameras, echocardiography, optical coherence tomography, and fluoroscopy. Post-procedural micro-computed tomography (micro-CT) was conducted to provide post-implantation imaging with approximately 60-micron resolution. The reconstructions are then segmented and used to create 3D renderings of these complex procedures. These methodologies are repeatable and can be used in a variety of conditions to be used in subsequent educational uses.more » « less
-
Transparent microelectrode arrays (MEAs) that allow multimodal investigation of the spatiotemporal cardiac characteristics are important in studying and treating heart disease. Existing implantable devices, however, are designed to support chronic operational lifetimes and require surgical extraction when they malfunction or are no longer needed. Meanwhile, bioresorbable systems that can self-eliminate after performing temporary functions are increasingly attractive because they avoid the costs/risks of surgical extraction. We report the design, fabrication, characterization, and validation of a soft, fully bioresorbable, and transparent MEA platform for bidirectional cardiac interfacing over a clinically relevant period. The MEA provides multiparametric electrical/optical mapping of cardiac dynamics and on-demand site-specific pacing to investigate and treat cardiac dysfunctions in rat and human heart models. The bioresorption dynamics and biocompatibility are investigated. The device designs serve as the basis for bioresorbable cardiac technologies for potential postsurgical monitoring and treating temporary patient pathological conditions in certain clinical scenarios, such as myocardial infarction, ischemia, and transcatheter aortic valve replacement.more » « less
-
Heart valve disease (HVD), a significant cardiovascular complication, is one of the leading global causes of morbidity and mortality. Treatment for HVD often involves medical devices such as bioprosthetic valves. However, the design and optimization of these devices require a thorough understanding of their biomechanical and hemodynamic interactions with patient-specific anatomical structures. Parametric procedural geometry has become a powerful tool in enhancing the efficiency and accuracy of design optimization for such devices, allowing researchers to systematically explore a wide range of possible configurations. In this work, we present a robust framework for parametric and procedural modeling of stented bioprosthetic heart valves and patient-specific aortic geometries. The framework employs non-uniform rational B-splines (NURBS)-based geometric parameterization, enabling precise control over key anatomical and design variables. By enabling a modular and expandable workflow, the framework supports iterative optimization of valve designs to achieve improved hemodynamic performance and durability. We demonstrate its applicability through simulations on bioprosthetic aortic valves, highlighting the impact of geometric parameters on valve function and their potential for personalized device design. By coupling parametric geometry with computational tools, this framework offers researchers and engineers a streamlined pathway toward innovative and patient-specific cardiovascular solutions.more » « less
-
ImportanceAssessing nontechnical skills in operating rooms (ORs) is crucial for enhancing surgical performance and patient safety. However, automated and real-time evaluation of these skills remains challenging. ObjectiveTo explore the feasibility of using motion features extracted from surgical video recordings to automatically assess nontechnical skills during cardiac surgical procedures. Design, Setting, and ParticipantsThis cross-sectional study used video recordings of cardiac surgical procedures at a tertiary academic US hospital collected from January 2021 through May 2022. The OpenPose library was used to analyze videos to extract body pose estimations of team members and compute various team motion features. The Non-Technical Skills for Surgeons (NOTSS) assessment tool was employed for rating the OR team’s nontechnical skills by 3 expert raters. Main Outcomes and MeasuresNOTSS overall score, with motion features extracted from surgical videos as measures. ResultsA total of 30 complete cardiac surgery procedures were included: 26 (86.6%) were on-pump coronary artery bypass graft procedures and 4 (13.4%) were aortic valve replacement or repair procedures. All patients were male, and the mean (SD) age was 72 (6.3) years. All surgical teams were composed of 4 key roles (attending surgeon, attending anesthesiologist, primary perfusionist, and scrub nurse) with additional supporting roles. NOTSS scores correlated significantly with trajectory (r = 0.51,P = .005), acceleration (r = 0.48,P = .008), and entropy (r = −0.52,P = .004) of team displacement. Multiple linear regression, adjusted for patient factors, showed average team trajectory (adjustedR2 = 0.335; coefficient, 10.51 [95% CI, 8.81-12.21];P = .004) and team displacement entropy (adjustedR2 = 0.304; coefficient, −12.64 [95% CI, −20.54 to −4.74];P = .003) were associated with NOTSS scores. Conclusions and RelevanceThis study suggests a significant link between OR team movements and nontechnical skills ratings by NOTSS during cardiac surgical procedures, suggesting automated surgical video analysis could enhance nontechnical skills assessment. Further investigation across different hospitals and specialties is necessary to validate these findings.more » « less
An official website of the United States government

