This study quantifies the contribution to Arctic winter surface warming from changes in the tropospheric energy transport (
- Award ID(s):
- 2026863
- NSF-PAR ID:
- 10391013
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 2
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This paper examines the processes that drive Arctic anomalous surface warming and sea ice loss during winter-season tropospheric energy flux events, synoptic periods of increased tropospheric energy flux convergence ( F trop ), using the NASA MERRA-2 reanalysis. During an event, a poleward anomaly in F trop initially increases the sensible and latent energy of the Arctic troposphere; as the warm and moist troposphere loses heat, the anomalous energy source is balanced by a flux upward across the tropopause and a downward net surface flux. A new metric for the Arctic surface heating efficiency ( E trop ) is defined, which measures the fraction of the energy source that reaches the surface. Composites of high-, medium-, and low-efficiency events help identify key physical factors, including the vertical structure of F trop and Arctic surface preconditioning. In high-efficiency events ( E trop ≥ 0.63), a bottom-heavy poleward F trop occurs in the presence of an anomalously warm and unstratified Arctic—a consequence of decreased sea ice—resulting in increased vertical mixing, enhanced near-surface warming and moistening, and further sea ice loss. Smaller E trop , and thus weaker surface impacts, are found in events with anomalously large initial sea ice extent and more vertically uniform F trop . These differences in E trop are manifested primarily through turbulent heat fluxes rather than downward longwave radiation. The frequency of high-efficiency events has increased from the period 1980–99 to the period 2000–19, contributing to Arctic surface warming and sea ice decline.more » « less
-
null (Ed.)Abstract The flux of moist static energy into the polar regions plays a key role in the energy budget and climate of the polar regions. While usually studied from a vertically integrated perspective ( F wall ), this analysis examines its vertical structure, using the NASA-MERRA-2 reanalysis to compute climatological and anomalous fluxes of sensible, latent, and potential energy across 70°N and 65°S for the period 1980–2016. The vertical structure of the climatological flux is bimodal, with peaks in the middle to lower troposphere and middle to upper stratosphere. The near-zero flux at the tropopause defines the boundary between stratospheric ( F strat ) and tropospheric ( F trop ) contributions to F wall . Especially at 70°N, F strat is found to be important to the climatology and variability of F wall , contributing 20.9 W m −2 to F wall (19% of F wall ) during the winter and explaining 23% of the variance of F wall . During winter, an anomalous poleward increase in F strat preceding a sudden stratospheric warming is followed by an increase in outgoing longwave radiation anomalies, with little influence on the surface energy budget of the Arctic. Conversely, a majority of the energy input by an anomalous poleward increase in F trop goes toward warming the Arctic surface. Overall, F trop is found to be a better metric than F wall for evaluating the influence of atmospheric circulations on the Arctic surface climate.more » « less
-
Abstract The carbonate chemistry in the Dalton Polynya in East Antarctica (115°–123°E) was investigated in summer 2014/2015 using high‐frequency underway measurements of CO2fugacity (
f CO2) and discrete water column measurements of total dissolved inorganic carbon (TCO2) and total alkalinity. Air‐sea CO2fluxes indicate this region was a weak net source of CO2to the atmosphere (0.7 ± 0.9 mmol C m−2day−1) during the period of observation, with the largest degree of surface water supersaturation (Δf CO2= +45 μatm) in ice‐covered waters near the Totten Ice Shelf (TIS) as compared to the ice‐free surface waters in the Dalton Polynya. The seasonal depletion of mixed‐layer TCO2(6 to 51 μmol/kg) in ice‐free regions was primarily driven by sea ice melt and biological CO2uptake. Estimates of net community production (NCP) reveal net autotrophy in the ice‐free Dalton Polynya (NCP = 5–20 mmol C m−2day−1) and weakly heterotrophic waters near the ice‐covered TIS (NCP = −4–0 mmol C m−2day−1). Satellite‐derived estimates of chlorophylla (Chla ) and sea ice coverage suggest that the early summer season in 2014/2015 was anomalous relative to the long‐term (1997–2017) record, with lower surface Chla concentrations and a greater degree of sea ice cover during the period of observation; the implications for seasonal primary production and air‐sea CO2exchange are discussed. This study highlights the importance of both physical and biological processes in controlling air‐sea CO2fluxes and the significant interannual variability of the CO2system in Antarctic coastal regions. -
Intrusions of warm, moist air into the Arctic during winter have emerged as important contributors to Arctic surface warming. Previous studies indicate that temperature, moisture, and hydrometeor enhancements during intrusions all make contributions to surface warming via emission of radiation down to the surface. Here, datasets from instrumentation at the Atmospheric Radiation Measurement User Facility in Utqiaġvik (formerly Barrow) for the six months from November through April for the six winter seasons of 2013/14–2018/19 were used to quantify the atmospheric state. These datasets subsequently served as inputs to compute surface downwelling longwave irradiances via radiative transfer computations at 1-min intervals with different combinations of constituents over the six winter seasons. The computed six winter average irradiance with all constituents included was 205.0 W m−2, close to the average measured irradiance of 206.7 W m−2, a difference of −0.8%. During this period, water vapor was the most important contributor to the irradiance. The computed average irradiance with dry gas was 71.9 W m−2. Separately adding water vapor, liquid, or ice to the dry atmosphere led to average increases of 2.4, 1.8, and 1.6 times the dry atmosphere irradiance, respectively. During the analysis period, 15 episodes of warm, moist air intrusions were identified. During the intrusions, individual contributions from elevated temperature, water vapor, liquid water, and ice water were found to be comparable to each other. These findings indicate that all properties of the atmospheric state must be known in order to quantify the radiation coming down to the Arctic surface during winter.
-
Abstract Surface albedo can affect the energy budget and subsequently cause localized warming or cooling of the climate. When we convert a substantial portion of lands to agriculture, land surface properties are consequently altered, including albedo. Through crop selection and management, one can increase crop albedo to obtain higher levels of localized cooling effects to mitigate global warming. Still, there is little understanding about how distinctive features of a cropping system may be responsible for elevated albedo and consequently for the cooling potential of cultivated lands. To address this pressing issue, we conducted seasonal measurements of surface reflectivity during five growing seasons on annual crops of corn-soybean–winter wheat (
Zea mays L.- Glycine max L. Merrill—Triticum aestivum L. ; CSW) rotations at three agronomic intensities, a monoculture of perennial switchgrass, and perennial polycultures of early successional and restored prairie grasslands. We found that crop-species, agronomic intensity, seasonality, and plant phenology had significant effects on albedo. The mean ± SD of albedo was highest in perennial crops of switchgrass (Panicum virgatum ; 0.179 ± 0.04), intermediate in early successional crops (0.170 ± 0.04), and lowest in a reduced input corn systems with cover crops (0.154 ± 0.02). Thes trongest cooling potentials were found in soybean (−0.450 kg CO2e m−2yr−1) and switchgrass (−0.367 kg CO2e m−2yr−1), with up to −0.265 kg CO2e m−2yr−1of localized climate cooling annually provided by different agroecosystems. We also demonstrated how diverse ecosystems, leaf canopy, and agronomic practices can affect surface reflectivity and provide another potential nature-based solution for reducing global warming at localized scales.