While most models agree that the Atlantic meridional overturning circulation (AMOC) becomes weaker under greenhouse gas emission and is likely to weaken over the twenty-first century, they disagree on the projected magnitudes of AMOC weakening. In this work, CMIP6 models with stronger climatological AMOC are shown to project stronger AMOC weakening in both 1% ramping CO2and abrupt CO2quadrupling simulations. A physical interpretation of this result is developed. For models with stronger mean state AMOC, stratification in the upper Labrador Sea is weaker, allowing for stronger mixing of the surface buoyancy flux. In response to CO2increase, surface warming is mixed to the deeper Labrador Sea in models with stronger upper-ocean mixing. This subsurface warming and corresponding density decrease drives AMOC weakening through advection from the Labrador Sea to the subtropics via the deep western boundary current. Time series analysis shows that most CMIP6 models agree that the decrease in subsurface Labrador Sea density leads AMOC weakening in the subtropics by several years. Also, idealized experiments conducted in an ocean-only model show that the subsurface warming over 500–1500 m in the Labrador Sea leads to stronger AMOC weakening several years later, while the warming that is too shallow (<500 m) or too deep (>1500 m) in the Labrador Sea causes little AMOC weakening. These results suggest that a better representation of mean state AMOC is necessary for narrowing the intermodel uncertainty of AMOC weakening to greenhouse gas emission and its corresponding impacts on future warming projections.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract This study quantifies the contribution to Arctic winter surface warming from changes in the tropospheric energy transport (
F trop) and the efficiency with whichF tropheats the surface in the RCP8.5 warming scenario of the Community Earth System Model Large Ensemble. A metric for this efficiency,E trop, measures the fraction of anomalousF tropthat is balanced by an anomalous net surface flux (NSF). Drivers ofE tropare identified in synoptic‐scale events during whichF tropis the dominant driver of NSF.E tropis sensitive to the vertical structure ofF tropand pre‐existing Arctic lower‐tropospheric stability (LTS). In RCP8.5, winter‐meanF tropdecreases from 95.1 to 85.4 W m−2, whileE tropincreases by 5.7%, likely driven by decreased Arctic LTS, indicating an increased coupling betweenF tropand the surface energy budget. The net impact of decreasingF tropand increasing efficiency is a positive 0.7 W m−2contribution to winter‐season surface heating. -
Abstract This paper examines the processes that drive Arctic anomalous surface warming and sea ice loss during winter-season tropospheric energy flux events, synoptic periods of increased tropospheric energy flux convergence ( F trop ), using the NASA MERRA-2 reanalysis. During an event, a poleward anomaly in F trop initially increases the sensible and latent energy of the Arctic troposphere; as the warm and moist troposphere loses heat, the anomalous energy source is balanced by a flux upward across the tropopause and a downward net surface flux. A new metric for the Arctic surface heating efficiency ( E trop ) is defined, which measures the fraction of the energy source that reaches the surface. Composites of high-, medium-, and low-efficiency events help identify key physical factors, including the vertical structure of F trop and Arctic surface preconditioning. In high-efficiency events ( E trop ≥ 0.63), a bottom-heavy poleward F trop occurs in the presence of an anomalously warm and unstratified Arctic—a consequence of decreased sea ice—resulting in increased vertical mixing, enhanced near-surface warming and moistening, and further sea ice loss. Smaller E trop , and thus weaker surface impacts, are found in events with anomalously large initial sea ice extent and more vertically uniform F trop . These differences in E trop are manifested primarily through turbulent heat fluxes rather than downward longwave radiation. The frequency of high-efficiency events has increased from the period 1980–99 to the period 2000–19, contributing to Arctic surface warming and sea ice decline.more » « less