Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
                        more » 
                        « less   
                    
                            
                            Interdisciplinary Research and STEM-focused Social Science Curriculum Support Retention and Impact Perception of Science in Cohort of S-STEM Scholarship Students
                        
                    
    
            A curricular approach to supporting low-income STEM Scholars is outlined and initial associations with retention, social and cultural capital, perception of science, self-efficacy, and outcome expectations are examined. Details are provided for the curricular support program based on interdisciplinary research, service learning, and an explicit examination of the interpretation of science based on culture and social location. We show that Scholars had increased retention and graduation within STEM majors compared to a control group. Further, Scholars self-report in surveys and interviews increased social and cultural capital, motivation, and related outcomes that they attribute to the interdisciplinary coursework that comprises the bulk of the program. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1643475
- PAR ID:
- 10391020
- Date Published:
- Journal Name:
- Journal of STEM Education
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 2785-9436
- Page Range / eLocation ID:
- 5-16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            While our world consistently presents complicated, interdisciplinary problems with STEM foundations, most pre-university curricula do not encourage drawing on multidisciplinary knowledge in the sciences and engineering to create solutions. We developed an instructional approach, Iterative Science and Engineering (ISE), that cycles through scientific investigation and engineering design and culminates in constructing a solution to a local environmental challenge. Next, we created, revised, and evaluated a six-week ISE curricular program, Invasive Insects, culminating in 6th–9th-grade students building traps to mitigate local invasive insect populations. Over three Design-Based Research (DBR) cycles, we gathered and analyzed identical pre and post-test data from 554 adolescents to address the research question: what three-dimensional (3D) science and engineering knowledge do adolescents demonstrate over three DBR cycles associated with a curricular program following the Iterative Science and Engineering instructional approach? Results document students’ significant statistical improvements, with differential outcomes in different cycles. For example, most students demonstrated significant learning of 3D science and engineering argument construction in all cycles—still, students only significantly improved engineering design when they performed guided reflection on their designs and physically built a second trap. Our results suggest that the development, refinement, and empirical evaluation of an ISE curricular program led to students’ design, building, evaluation, and sharing of their learning of mitigating local invasive insect populations. To address complex, interdisciplinary challenges, we must provide opportunities for fluid and iterative STEM learning through scientific investigation and engineering design cycles.more » « less
- 
            Students Engaging In Scientific and Mathematical Interdisciplinary Collaboration (NSF 164375), supports low-income, academically talented Scholars with multiple components including scholarships, paid undergraduate research, service learning, social science and humanities courses, and career development. Scholars will graduate in STEM at a rate of 95%, higher than the rate of eligible, non-participants (62%). High percentages of Scholars attribute increased understanding of the interdisciplinary nature of STEM and growth in on-campus support networks to programming. However, they report variation in the components to which they attribute those gains, with most participants acknowledging the importance of engagement with different program components over time. Scholars report differences in off-campus work, which may have been impacted by the Covid pandemic. While all Scholars starting at the onset of the Covid pandemic were retained in STEM, retention of eligible, non-participants fell from 70% to 38%, indicating the importance of financial and communal support during challenging times.more » « less
- 
            Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM at the University of Washington Tacoma started as a Track 1 S-STEM program in 2018 and has supported 69 students to date. This year we received Track 2 funding and welcomed our fifth cohort to campus, with funding to support ~32 additional students through 2026. University of Washington Tacoma is an Asian American and Native American Pacific Islander-serving institution (AANAPISI), and we serve a high proportion of racial minority and first generation college students. Our ACCESS scholars are pursuing bachelor’s degrees in Mathematics, Environmental Science, Biomedical Sciences, Information Technology, Computer Science and Systems, Computer Engineering and Systems, Electrical Engineering, Mechanical Engineering, and Civil Engineering, with Computer Science and Engineering representing over 60% of ACCESS scholars to date. First-time college students and first-year transfer students receive full scholarships for their first two years, and partial scholarships for their third and fourth years. The project includes an optional Early Fall Math course to enhance entry into STEM majors, and participants are able to engage in a Research Experience or project-based Introduction to Engineering course in their first year. Coupled with individual faculty mentoring and an on-campus STEM living learning community, the quarterly Success in STEM seminar course helps scholars form a cohesive community through group mentoring, as well as develop a sense of belonging, identity, and empowerment to transform the culture of STEM. This program is distinguished by its focus on pre-STEM majors in their first and second years on campus, and includes mentor training for ~30-40 faculty in teaching and mentoring diverse student populations, thus impacting all students in our majors. Our goal was to evaluate the effectiveness of a program that focuses on the first two years of college and provides financial support, courses to introduce students to research and project-based engineering, and intensive mentoring in increasing retention and academic success for Computer Science and Engineering (CS+E) students, and whether this program helps to close equity gaps for CS+E students who are low socioeconomic status (SES), underrepresented minorities (URMs), female, and/or first generation in college (First Gen) students. We compared our student scholars to a comparison group of students who met eligibility requirements but did not participate in the program. Program scholars had higher first and second year retention, and had significantly higher GPAs. The pandemic resulted in significant social, emotional, and economic stresses for our program scholars, which may have heightened the impact of the ACCESS in STEM program.more » « less
- 
            College students experiencing financial challenges also face additional social and academic challenges to staying enrolled through graduation. Colleges that have the greatest success in persistence to graduation have combined scholarships with other academic, emotional, and social support. Here, we review previous studies of the relationship between S-STEM programs and college retention. We then discuss interim findings from the Iona College Development of Excellence in Science through Intervention, Resilience, and Enrichment (DESIRE) National Science Foundation (NSF) S-STEM scholarship program. DESIRE provides tuition scholarships and other support to academically talented chemistry and computer science majors with financial need. We gathered students’ perspectives regarding the DESIRE program and what helps them to persist in college, through interviews with DESIRE scholars and qualitative surveys of DESIRE scholars and a comparison group of non-DESIRE students. We discuss implications for S-STEM programs and other initiatives that seek to retain more STEM undergraduate students with financial need.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    