skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultra‐Flexible Giant Magnetoresistance Biosensors for Lab‐on‐a‐Needle Biosensing
Abstract Flexible biosensors exhibit great potential for the detection of various biomarkers with the ability to adapt to different surface textures. Here, a lab‐on‐a‐needle biosensing platform based on ultra‐flexible giant magnetoresistance (GMR) biosensors is developed. The fabricated flexible GMR sensors exhibit a MR ratio of 5.2% and a sensitivity of 0.13%/Oe in the linear region, which are comparable to their rigid counterparts. It is found that the magnetic properties of the flexible GMR sensors remain unchanged after 500 cycles of compressive and tensile stress, indicating strong robustness even when applied to a surface that is constantly in motion. The developed platform is then employed for the detection of different concentrations of canine osteosarcoma (OSCA‐8) cells with a limit of detection (LOD) of 200 cells in 20 µL sample (104cells per mL), which demonstrate the ability to perform real‐time, sensitive, and quantitative cell detection.  more » « less
Award ID(s):
2011401 1941543
PAR ID:
10391099
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
10
Issue:
7
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetoelastic (ME) sensors, which can be remotely activated via magnetic fields, are an excellent choice for wireless monitoring of biological parameters due to their ability to be scaled into different sizes and have their surface functionalized for chemical or biological sensing. In this study, we present the application of a commercially available ME material (Metglas 2826 MB) to develop a sensor system that can monitor the attachment of anchorage‐dependent mammalian cells in two‐dimensional in vitro cell cultures. Results obtained with the developed sensors and detection system correlated with microscopic image analysis of cell quantification, which showed a linear relationship between the sensor response and attached fibroblast cells on the sensor surface. It was also revealed that the developed ME sensor system is capable of providing temporal profiles of cell growth corresponding to different stages of cell attachment and proliferation in real‐time. 
    more » « less
  2. Abstract Although increasing efforts have been devoted to the development of non‐invasive wearable electrochemical sweat sensors for monitoring physiological and metabolic information, most of them still suffer from poor stability and specificity over time and fluctuating temperatures. This study reports the design and fabrication of a long‐term stable and highly sensitive flexible electrochemical sensor based on nanocomposite‐modified porous graphene by facile laser treatment for detecting biomarkers such as glucose in sweat. The laser‐reduced and patterned stable conductive nanocomposite on the porous graphene electrode provides the resulting glucose sensor with an excellent sensitivity of 1317.69 µA mm−1cm−2and an ultra‐low limit of detection of 0.079 µm. The sensor can also detect pH and exhibit extraordinary stability to maintain more than 91% sensitivity over 21 days in ambient conditions. Taken together with a temperature sensor based on the same material system, the dual glucose and pH sensor integrated with a flexible microfluidic sweat sampling network further results in accurate continuous on‐body glucose detection calibrated by the simultaneously measured pH and temperature. The low‐cost, highly sensitive, and long‐term stable platform could facilitate the early identification and continuous monitoring of different biomarkers for non‐invasive disease diagnosis and treatment evaluation. 
    more » « less
  3. Abstract Pseudomonas aeruginosa(P. aeruginosa) is an opportunistic pathogen causing infections in blood and implanted devices. Traditional identification methods take more than 24 h to produce results. Molecular biology methods expedite detection, but require an advanced skill set. To address these challenges, this work demonstrates functionalization of laser‐induced graphene (LIG) for developing flexible electrochemical sensors forP. aeruginosabased on phenazines. Electrodeposition as a facile approach is used to functionalize LIG with molybdenum polysulfide (MoSx). The sensor's limit of detection (LOD), sensitivity, and specificity are determined in broth, agar, and wound simulating medium (WSM). Control experiments withEscherichia coli, which does not produce phenazines, demonstrate specificity of sensors forP. aeruginosa. The LOD for pyocyanin (PYO) and phenazine‐1‐carboxylic acid (PCA) is 0.19 × 10−6 and 1.2 × 10−6 m, respectively. Furthermore, the highly stable sensors enable real‐time monitoring ofP. aeruginosabiofilms over several days. Comparing square wave voltammetry data over time shows time‐dependent generation of phenazines. In particular, two configurations—“Normal” and “Flipped”—are studied, showing that the phenazines time dynamics vary depending on how cells interact with sensors. The reported results demonstrate the potential of the developed sensors for integration with wound dressings for early diagnosis ofP. aeruginosainfection. 
    more » « less
  4. Abstract Organic electrochemical transistors (OECTs) exhibit strong potential for various applications in bioelectronics, especially as miniaturized, point‐of‐care biosensors, because of their efficient transducing ability. To date, however, the majority of reported OECTs have relied on p‐type (hole transporting) polymer mixed conductors, due to the limited number of n‐type (electron transporting) materials suitable for operation in aqueous electrolytes, and the low performance of those which exist. It is shown that a simple solvent‐engineering approach boosts the performance of OECTs comprising an n‐type, naphthalenediimide‐based copolymer in the channel. The addition of acetone, a rather bad solvent for the copolymer, in the chloroform‐based polymer solution leads to a three‐fold increase in OECT transconductance, as a result of the simultaneous increase in volumetric capacitance and electron mobility in the channel. The enhanced electrochemical activity of the polymer film allows high‐performance glucose sensors with a detection limit of 10 × 10−6mof glucose and a dynamic range of more than eight orders of magnitude. The approach proposed introduces a new tool for concurrently improving the conduction of ionic and electronic charge carriers in polymer mixed conductors, which can be utilized for a number of bioelectronic applications relying on efficient OECT operation. 
    more » « less
  5. Abstract Soft (flexible and stretchable) biosensors have great potential in real-time and continuous health monitoring of various physiological factors, mainly due to their better conformability to soft human tissues and organs, which maximizes data fidelity and minimizes biological interference. Most of the early soft sensors focused on sensing physical signals. Recently, it is becoming a trend that novel soft sensors are developed to sense and monitor biochemical signalsin situin real biological environments, thus providing much more meaningful data for studying fundamental biology and diagnosing diverse health conditions. This is essential to decentralize the healthcare resources towards predictive medicine and better disease management. To meet the requirements of mechanical softness and complex biosensing, unconventional materials, and manufacturing process are demanded in developing biosensors. In this review, we summarize the fundamental approaches and the latest and representative design and fabrication to engineer soft electronics (flexible and stretchable) for wearable and implantable biochemical sensing. We will review the rational design and ingenious integration of stretchable materials, structures, and signal transducers in different application scenarios to fabricate high-performance soft biosensors. Focus is also given to how these novel biosensors can be integrated into diverse important physiological environments and scenariosin situ, such as sweat analysis, wound monitoring, and neurochemical sensing. We also rethink and discuss the current limitations, challenges, and prospects of soft biosensors. This review holds significant importance for researchers and engineers, as it assists in comprehending the overarching trends and pivotal issues within the realm of designing and manufacturing soft electronics for biochemical sensing. 
    more » « less