skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of urban parameterization and integration of WUDAPT on the severe convection
Abstract Amplified rates of urban convective systems pose a severe peril to the life and property of the inhabitants over urban regions, requiring a reliable urban weather forecasting system. However, the city scale's accurate rainfall forecast has constantly been a challenge, as they are significantly affected by land use/ land cover changes (LULCC). Therefore, an attempt has been made to improve the forecast of the severe convective event by employing the comprehensive urban LULC map using Local Climate Zone (LCZ) classification from the World Urban Database and Access Portal Tools (WUDAPT) over the tropical city of Bhubaneswar in the eastern coast of India. These LCZs denote specific land cover classes based on urban morphology characteristics. It can be used in the Advanced Research version of the Weather Research and Forecasting (ARW) model, which also encapsulates the Building Effect Parameterization (BEP) scheme. The BEP scheme considers the buildings' 3D structure and allows complex land–atmosphere interaction for an urban area. The temple city Bhubaneswar, the capital of eastern state Odisha, possesses significant rapid urbanization during the recent decade. The LCZs are generated at 500 m grids using supervised classification and are ingested into the ARW model. Two different LULC dataset, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS) and WUDAPT derived LCZs and initial, and boundary conditions from NCEP GFS 6-h interval are used for two pre-monsoon severe convective events of the year 2016. The results from WUDAPT based LCZ have shown an improvement in spatial variability and reduction in overall BIAS over MODIS LULC experiments. The WUDAPT based LCZ map enhances high-resolution forecast from ARW by incorporating the details of building height, terrain roughness, and urban fraction.  more » « less
Award ID(s):
1835739
PAR ID:
10391103
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Computational Urban Science
Volume:
2
Issue:
1
ISSN:
2730-6852
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Taking the examples of Hurricane Florence (2018) over the Carolinas and Hurricane Harvey (2017) over the Texas Gulf Coast, the study attempts to understand the performance of slab, single‐layer Urban Canopy Model (UCM), and Building Environment Parameterization (BEP) in simulating hurricane rainfall using the Weather Research and Forecasting (WRF) model. The WRF model simulations showed that for an intense, large‐scale event such as a hurricane, the model quantitative precipitation forecast over the urban domain was sensitive to the model urban physics. The spatial and temporal verification using the modified Kling‐Gupta efficiency and Method for Object based Diagnostic and Evaluation in Time Domain suggests that UCM performance is superior to the BEP scheme. Additionally, using the BEP urban physics scheme over UCM for landfalling hurricane rainfall simulations has helped simulate heavy rainfall hotspots. 
    more » « less
  2. Abstract The Local Climate Zone (LCZ) classification is already widely used in urban heat island and other climate studies. The current classification method does not incorporate crucial urban auxiliary GIS data on building height and imperviousness that could significantly improve urban-type LCZ classification utility as well as accuracy. This study utilized a hybrid GIS- and remote sensing imagery-based framework to systematically compare and evaluate different machine and deep learning methods. The Convolution Neural Network (CNN) classifier outperforms in terms of accuracy, but it requires multi-pixel input, which reduces the output’s spatial resolution and creates a tradeoff between accuracy and spatial resolution. The Random Forest (RF) classifier performs best among the single-pixel classifiers. This study also shows that incorporating building height dataset improves the accuracy of the high- and mid-rise classes in the RF classifiers, whereas an imperviousness dataset improves the low-rise classes. The single-pass forward permutation test reveals that both auxiliary datasets dominate the classification accuracy in the RF classifier, while near-infrared and thermal infrared are the dominating features in the CNN classifier. These findings show that the conventional LCZ classification framework used in the World Urban Database and Access Portal Tools (WUDAPT) can be improved by adopting building height and imperviousness information. This framework can be easily applied to different cities to generate LCZ maps for urban models. 
    more » « less
  3. The WUDAPT (World Urban Database and Access Portal Tools project goal is to capture consistent information on urban form and function for cities worldwide that can support urban weather, climate, hydrology and air quality modeling. These data are provided as urban canopy parameters (UCPs) as used by weather, climate and air quality models to simulate the effects of urban surfaces on the overlying atmosphere. Information is stored with different levels of detail (LOD). With higher LOD greater spatial precision is provided. At the lowest LOD, Local Climate Zones (LCZ) with nominal UCP ranges is provided (order 100 m or more). To describe the spatial heterogeneity present in cities with great specificity at different urban scales we introduce the Digital Synthetic City (DSC) tool to generate UCPs at any desired scale meeting the fit-for-purpose goal of WUDAPT. 3D building and road elements of entire city landscapes are simulated based on readily available data. Comparisons with real-world urban data are very encouraging. It is customized (C-DSC) to incorporate each city's unique building morphologies based on unique types, variations and spatial distribution of building typologies, architecture features, construction materials and distribution of green and pervious surfaces. The C-DSC uses crowdsourcing methods and sampling within city Testbeds from around the world. UCP data can be computed from synthetic images at selected grid sizes and stored such that the coded string provides UCP values for individual grid cells. 
    more » « less
  4. null (Ed.)
    Abstract The multilayer urban canopy models (UCMs) building effect parameterization (BEP) and BEP + building energy model (BEM; a building energy model integrated in BEP) are added to the Yonsei University (YSU) planetary boundary layer (PBL) parameterization in the Weather Research and Forecasting (WRF) Model. The additions allow for the first analysis of the detailed effects of buildings on the urban boundary layer in a nonlocal closure scheme. The modified YSU PBL parameterization is compared with the other 1.5-order local PBL parameterizations that predict turbulent kinetic energy (TKE), Mellor–Yamada–Janjić and Bougeault–Lacarerre, using both ideal and real cases. The ideal-case evaluation confirms that BEP and BEP+BEM produce the expected results in the YSU PBL parameterization because the simulations are qualitatively similar to the TKE-based PBL parameterizations in which the multilayer UCMs have long existed. The modified YSU PBL parameterization is further evaluated for a real case. Similar to the ideal case, there are larger differences among the different UCMs (simple bulk scheme, BEP, and BEP+BEM) than across the PBL parameterizations when the UCM is held fixed. Based on evaluation against urban near-surface wind and temperature observations for this case, the BEP and BEP+BEM simulations are superior to the simple bulk scheme for each PBL parameterization. 
    more » « less
  5. Urban canopy models (UCMs) in mesoscale numerical weather prediction models need evaluation to understand biases in urban environments under a range of conditions. The authors evaluate a new drag formula in the Weather Research and Forecasting (WRF) model’s multilayer UCM, the Building Effect Parameterization combined with the Building Energy Model (BEP+BEM), against both in-situ measurements in the urban environment as well as simulations with a simple bulk scheme and BEP+BEM using the old drag formula. The new drag formula varies with building packing density, while the old drag formula is constant. The case study is a strong cold frontal passage that occurred in Houston during the winter of 2017, causing high winds. It is found that both BEP+BEM simulations have lower peak wind speeds, consistent with near-surface measurements, while the bulk simulation has winds that are too strong. The constant-drag BEP+BEM simulation has a near-zero wind speed bias, while the new-drag simulation has a negative bias. Although the focus is on the impact of drag on the urban wind speeds, both BEP+BEM simulations have larger negative biases in the near-surface temperature than the bulk-scheme simulation. Reasons for the different performances are discussed. 
    more » « less