Abstract Amplified rates of urban convective systems pose a severe peril to the life and property of the inhabitants over urban regions, requiring a reliable urban weather forecasting system. However, the city scale's accurate rainfall forecast has constantly been a challenge, as they are significantly affected by land use/ land cover changes (LULCC). Therefore, an attempt has been made to improve the forecast of the severe convective event by employing the comprehensive urban LULC map using Local Climate Zone (LCZ) classification from the World Urban Database and Access Portal Tools (WUDAPT) over the tropical city of Bhubaneswar in the eastern coast of India. These LCZs denote specific land cover classes based on urban morphology characteristics. It can be used in the Advanced Research version of the Weather Research and Forecasting (ARW) model, which also encapsulates the Building Effect Parameterization (BEP) scheme. The BEP scheme considers the buildings' 3D structure and allows complex land–atmosphere interaction for an urban area. The temple city Bhubaneswar, the capital of eastern state Odisha, possesses significant rapid urbanization during the recent decade. The LCZs are generated at 500 m grids using supervised classification and are ingested into the ARW model. Two different LULC dataset, i.e., Moderate Resolution Imaging Spectroradiometer (MODIS) and WUDAPT derived LCZs and initial, and boundary conditions from NCEP GFS 6-h interval are used for two pre-monsoon severe convective events of the year 2016. The results from WUDAPT based LCZ have shown an improvement in spatial variability and reduction in overall BIAS over MODIS LULC experiments. The WUDAPT based LCZ map enhances high-resolution forecast from ARW by incorporating the details of building height, terrain roughness, and urban fraction.
more »
« less
Improving the local climate zone classification with building height, imperviousness, and machine learning for urban models
Abstract The Local Climate Zone (LCZ) classification is already widely used in urban heat island and other climate studies. The current classification method does not incorporate crucial urban auxiliary GIS data on building height and imperviousness that could significantly improve urban-type LCZ classification utility as well as accuracy. This study utilized a hybrid GIS- and remote sensing imagery-based framework to systematically compare and evaluate different machine and deep learning methods. The Convolution Neural Network (CNN) classifier outperforms in terms of accuracy, but it requires multi-pixel input, which reduces the output’s spatial resolution and creates a tradeoff between accuracy and spatial resolution. The Random Forest (RF) classifier performs best among the single-pixel classifiers. This study also shows that incorporating building height dataset improves the accuracy of the high- and mid-rise classes in the RF classifiers, whereas an imperviousness dataset improves the low-rise classes. The single-pass forward permutation test reveals that both auxiliary datasets dominate the classification accuracy in the RF classifier, while near-infrared and thermal infrared are the dominating features in the CNN classifier. These findings show that the conventional LCZ classification framework used in the World Urban Database and Access Portal Tools (WUDAPT) can be improved by adopting building height and imperviousness information. This framework can be easily applied to different cities to generate LCZ maps for urban models.
more »
« less
- Award ID(s):
- 1835739
- PAR ID:
- 10391104
- Date Published:
- Journal Name:
- Computational Urban Science
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2730-6852
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Geographic information systems (GIS) provide accurate maps of terrain, roads, waterways, and building footprints and heights. Aircraft, particularly small unmanned aircraft systems (UAS), can exploit this and additional information such as building roof structure to improve navigation accuracy and safely perform contingency landings particularly in urban regions. However, building roof structure is not fully provided in maps. This paper proposes a method to automatically label building roof shape from publicly available GIS data. Satellite imagery and airborne LiDAR data are processed and manually labeled to create a diverse annotated roof image dataset for small to large urban cities. Multiple convolutional neural network (CNN) architectures are trained and tested, with the best performing networks providing a condensed feature set for support vector machine and decision tree classifiers. Satellite image and LiDAR data fusion is shown to provide greater classification accuracy than using either data type alone. Model confidence thresholds are adjusted leading to significant increases in models precision. Networks trained from roof data in Witten, Germany and Manhattan (New York City) are evaluated on independent data from these cities and Ann Arbor, Michigan.more » « less
-
Abstract Urban areas are increasingly vulnerable to the impacts of climate change, necessitating accurate simulations of urban climates in Earth system models (ESMs) in support of large‐scale urban climate adaptation efforts. ESMs underrepresent urban areas due to their small spatial extent and the lack of detailed urban landscape data. To enhance the accuracy of urban representation, this study integrated the local climate zones (LCZs) scheme within the Community Earth System Model (CESM) to better represent urban heterogeneity. We adopted a modular approach to incorporate the 10 built LCZ classes into CESM as a new option in addition to the default urban three‐class scheme (i.e., tall building district, high density, and medium density). CESM simulations using the LCZ‐based urban characteristics were validated globally at 20 flux tower sites, showing site‐averaged improvement in modeling upward longwave radiation () and anthropogenic heat flux (), but increased uncertainties in modeling sensible heat flux (). The root‐mean‐square error between the observed and simulated using the LCZ decreased by 4% compared to using the default. Model sensitivity experiments revealed that and had comparable sensitivity to LCZ urban morphological and thermal parameter subsets. This study assessed and demonstrated the implementation as the starting point for future work on better resolving urban areas in Earth system modeling.more » « less
-
Messinger, David W.; Velez-Reyes, Miguel (Ed.)Recent advances in data fusion provide the capability to obtain enhanced hyperspectral data with high spatial and spectral information content, thus allowing for an improved classification accuracy. Although hyperspectral image classification is a highly investigated topic in remote sensing, each classification technique presents different advantages and disadvantages. For example; methods based on morphological filtering are particularly good at classifying human-made structures with basic geometrical spatial shape, like houses and buildings. On the other hand, methods based on spectral information tend to perform better classification in natural scenery with more shape diversity such as vegetation and soil areas. Even more, for those classes with mixed pixels, small training data or objects with similar re ectance values present a higher challenge to obtain high classification accuracy. Therefore, it is difficult to find just one technique that provides the highest accuracy of classification for every class present in an image. This work proposes a decision fusion approach aiming to increase classification accuracy of enhanced hyperspectral images by integrating the results of multiple classifiers. Our approach is performed in two-steps: 1) the use of machine learning algorithms such as Support Vector Machines (SVM), Deep Neural Networks (DNN) and Class-dependent Sparse Representation will generate initial classification data, then 2) the decision fusion scheme based on a Convolutional Neural Network (CNN) will integrate all the classification results into a unified classification rule. In particular, the CNN receives as input the different probabilities of pixel values from each implemented classifier, and using a softmax activation function, the final decision is estimated. We present results showing the performance of our method using different hyperspectral image datasets.more » « less
-
A novel hyperspectral image classification algorithm is proposed and demonstrated on benchmark hyperspectral images. We also introduce a hyperspectral sky imaging dataset that we are collecting for detecting the amount and type of cloudiness. The algorithm designed to be applied to such systems could improve the spatial and temporal resolution of cloud information vital to understanding Earth’s climate. We discuss the nature of our HSI-Cloud dataset being collected and an algorithm we propose for processing the dataset using a categorical-boosting method. The proposed method utilizes multiple clusterings to augment the dataset and achieves higher pixel classification accuracy. Creating categorical features via clustering enriches the data representation and improves boosting ensembles. For the experimental datasets used in this paper, gradient boosting methods performed favorably to the benchmark algorithms.more » « less
An official website of the United States government

