skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying Facilitators, Barriers, and Potential Solutions of Adopting Exoskeletons and Exosuits in Construction Workplaces
Exoskeletons and exosuits (collectively termed EXOs) have the potential to reduce the risk of work-related musculoskeletal disorders (WMSDs) by protecting workers from exertion and muscle fatigue due to physically demanding, repetitive, and prolonged work in construction workplaces. However, the use of EXOs in construction is in its infancy, and much of the knowledge required to drive the acceptance, adoption, and application of this technology is still lacking. The objective of this research is to identify the facilitators, barriers, and corresponding solutions to foster the adoption of EXOs in construction workplaces through a sequential, multistage Delphi approach. Eighteen experts from academia, industry, and government gathered in a workshop to provide insights and exchange opinions regarding facilitators, barriers, and potential solutions from a holistic perspective with respect to business, technology, organization, policy/regulation, ergonomics/safety, and end users (construction-trade professionals). Consensus was reached regarding all these perspectives, including top barriers and potential solution strategies. The outcomes of this study will help the community gain a comprehensive understanding of the potential for EXO use in the construction industry, which may enable the development of a viable roadmap for the evolution of EXO technology and the future of EXO-enabled workers and work in construction workplaces.  more » « less
Award ID(s):
2128716 2128823
PAR ID:
10391319
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
24
ISSN:
1424-8220
Page Range / eLocation ID:
9987
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The labor-intensive nature of the construction industry requires workers to frequently perform physically demanding manual work, thereby exposing them to the risk of musculoskeletal injury (approximately 31.2 cases per 10,000 full-time equivalent workers). Exoskeletons and exosuits (collectively called EXOs here) are designed to protect workers from these injuries by reducing exertion and muscle fatigue during work. However, the usability of EXOs in construction is still not clear. This is because extant EXO assessments in construction were mainly conducted in laboratory environments with test participants who are not construction professionals. In this research, we conducted a pilot study to investigate the usability of EXOs in a real construction workplace. Four experienced workers were recruited to push/empty construction gondolas with and without a Back-Support EXO, HeroWear Apex. Three workers were recruited to install/remove wooden blocks between steel studs with and without two Arm-Support EXOs, i.e., Ekso EVO and Hilti EXO-001. Their motions, postures, heart rates, and task completion times were recorded and compared. The workers were also surveyed to gather their attitudes toward the EXO’s usefulness and ease of use. The study results demonstrated that the workers responded to the use of EXOs differently and consequently were not unanimously in favor of EXO adoption in practice. The preliminary results and findings from this pilot study help in building a foundation of understanding to improve EXO products to fit the needs of construction workers and foster EXO-enabled construction tasks in the future. 
    more » « less
  2. Powered exoskeletons have the potential to reduce the physical demands on construction workers and enhance their abilities, yet adoption of this technology has been limited in the US construction sector. To that end, this study aimed to identify the barriers to the adoption of powered exoskeletons in the US construction industry. Firstly, a literature review was conducted to identify commercially available powered exoskeletons suitable for construction. Concurrently,questionnaires were developed and distributed among construction practitioners to understand the challenges associated with the implementation of powered exoskeletons in the US construction industry. The results showed that concerns about usability and productivity gains were the main barriers to the adoption of exoskeletons in the construction sector. The findings of this study provide valuable insights for improving the adoption and implementation of powered exoskeletons in the US construction industry, which could enhance worker safety and productivity. 
    more » « less
  3. The adoption of robotics into the construction industry has been progressing slower than in the manufacturing and industrial sectors. Current shortfalls in skilled labor, productivity trends, and ongoing safety challenges point to the need for a drastic shift toward adopting robotics. Addressing these shortfalls would be a necessary component of the shift toward industrializing the construction industry. Despite this lag in technology adoption, the interest and development of robotic technology targeting the construction industry has grown in recent years and is ranging from the use of drones for tracking to advances in offsite fabrication. However, the integration into fundamental site construction necessitates reconsidering the information technology infrastructure needed to support detailed task execution information needs in the change from craft labor to robotic operations. This research presents the identification and mapping of the Information Technology (IT) system architecture required to support building information modeling (BIM) to robotic construction. Combining elements of BIM architecture and information exchanges with the needed construction task decomposition is required. These elements are mapped to the robotic system elements vital for mobile robotic operations. In addition to defining the functions and integration required to support the BIM to robotic Construction Workflow, shortcomings in existing infrastructure, notably regarding the ability to decompose construction fabrication and assembly means and methods, are defined. 
    more » « less
  4. This study aimed to investigate the key technical and psychological factors that impact the architecture, engineering, and construction (AEC) professionals’ trust in collaborative robots (cobots) powered by artificial intelligence (AI). This study seeks to address the critical knowledge gaps surrounding the establishment and reinforcement of trust among AEC professionals in their collaboration with AI-powered cobots. In the context of the construction industry, where the complexities of tasks often necessitate human–robot teamwork, understanding the technical and psychological factors influencing trust is paramount. Such trust dynamics play a pivotal role in determining the effectiveness of human–robot collaboration on construction sites. This research employed a nationwide survey of 600 AEC industry practitioners to shed light on these influential factors, providing valuable insights to calibrate trust levels and facilitate the seamless integration of AI-powered cobots into the AEC industry. Additionally, it aimed to gather insights into opportunities for promoting the adoption, cultivation, and training of a skilled workforce to effectively leverage this technology. A structural equation modeling (SEM) analysis revealed that safety and reliability are significant factors for the adoption of AI-powered cobots in construction. Fear of being replaced resulting from the use of cobots can have a substantial effect on the mental health of the affected workers. A lower error rate in jobs involving cobots, safety measurements, and security of data collected by cobots from jobsites significantly impact reliability, and the transparency of cobots’ inner workings can benefit accuracy, robustness, security, privacy, and communication and result in higher levels of automation, all of which demonstrated as contributors to trust. The study’s findings provide critical insights into the perceptions and experiences of AEC professionals toward adoption of cobots in construction and help project teams determine the adoption approach that aligns with the company’s goals workers’ welfare. 
    more » « less
  5. Humanity’s evolution toward an interplanetary species poses a new frontier for the construction industry: extraterrestrial construction. With fast technological advancements in manufacturing and robotics, it is a matter of when, not if, before humans make perpetual habitats on nearby planetary bodies. We envision the emerging frontier of the construction industry as extraterrestrial construction, where the role of workers and their required skills will change dramatically. Due to the extreme and hazardous outer-space conditions, the future of extraterrestrial construction will be technology-intensive, from using onsite machine and robot operations to using cyber-physical systems for managing logistical operations. Accordingly, the role and skillsets of construction workers in future extraterrestrial construction projects will contrast with the current practices on Earth. We aim to present a collective perspective on the nature of future extraterrestrial construction and the hierarchy of the skills required by future workers, as well as emerging technologies that can be used for developing a future-ready workforce. To accomplish this, we convened a national interdisciplinary workshop, engaging diverse stakeholders in the United States, including researchers, educators, and professionals, from academia, industry, and government. This paper summarizes the outcomes of our workshop, structured around three core themes: future work (extraterrestrial construction), future workers (extraterrestrial workforce), and future technology (emerging technologies for workforce training). The detailed exploration within these three themes marks an initial endeavor to chart a course for training in extraterrestrial construction, particularly with NASA’s Moon to Mars Program in mind. 
    more » « less