skip to main content


Title: Green synthesis of CdS/Ni x S y nanoparticles as a route towards sustainable and scalable photocatalysts
If hydrogen evolution photocatalysis are to be deployed at industrial scale, the synthesis of these photocatalytic materials must be both economically and environmentally scalable. This suggests that we must move towards green synthesis of earth-abundant photocatalysts while also maintaining high catalytic performance. Herein, we present the enzymatically driven, aqueous phase, low temperature, synthesis of an earth-abundant nickel sulfide (Ni x S y ) hydrogen evolution cocatalyst, and its integration into a CdS/Ni x S y heterostructured photocatalyst. This resulting photocatalyst provides hydrogen evolution rates (10 500 μmol h −1 g −1 ) comparable to photocatalysts prepared by more traditional routes. Furthermore, the Ni x S y is demonstrated to provide similar activity enhancement to the more traditional, but also more expensive platinum cocatalysts. To achieve this result, we carefully studied and engineered the synthesis environment to maintain enzyme activity towards HS − production while sustaining a sufficient concentration of free Ni 2+ in solution to enable reaction and formation of Ni x S y . Ultimately, this work provides a methodology to control the coordination of metal precursors in low temperature, aqueous systems to allow for precipitation of catalytically active materials and demonstrates the viability of green synthesis pathways for photocatalysts.  more » « less
Award ID(s):
1821389
NSF-PAR ID:
10391341
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Green Chemistry
ISSN:
1463-9262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photocatalysis is an attractive, sustainable, and potentially low-cost route to capture solar energy as fuel. However, current photocatalytic materials synthesis routes are not easily scaled-up to the magnitude required to impact our energy consumption due to both economic and environmental concerns. While the elements utilized are often earth abundant, typical synthetic routes utilize organic solvents at elevated temperatures with relatively expensive precursors. Herein, we demonstrate the fully biomineralized synthesis of a quantum confined CdS/reduced graphene oxide (CdS/rGO) photocatalyst catalyzed by the single enzyme cystathionine γ-lyase (CSE). The synthesis is performed at pH 9 in a buffered aqueous solution, under ambient conditions, and utilizes the low-cost precursors Cd acetate, l -cysteine, graphene oxide, and a poly- l -lysine linker molecule. CSE actively decomposes l -cysteine to generate reactive HS − in aqueous solution at pH 9. Careful selection and control of the synthesis conditions enable both reduction of graphene oxide to rGO, and control over the mean CdS nanocrystal size. The CdS is conjugated to the rGO via a poly- l -lysine crosslinker molecule introduced during rGO formation. The completed CdS/rGO photocatalyst is capable of producing H 2 , without the aid of a noble metal co-catalyst, at a rate of 550 μmol h −1 g −1 for an optimized CdS/rGO ratio. This rate is double that measured for unsupported CdS and is comparable to CdS/rGO photocatalysts produced using more typical chemical synthesis routes. Single enzyme biomineralization by CSE can produce a range of metal chalcogenides without altering the enzyme or benign approach, making this an easily adaptable procedure for the sustainable production of a wide variety of important photocatalyst systems. 
    more » « less
  2. Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La 0.5 Sr 0.5 Ni 1-x Fe x O 3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance on mixed metal oxide catalysts, suggesting common motifs of the active surface with high surface area systems. 
    more » « less
  3. Abstract

    Electrocatalytic two‐electron reduction of oxygen is a promising method for producing sustainable H2O2but lacks low‐cost and selective electrocatalysts. Here, the Chevrel phase chalcogenide Ni2Mo6S8is presented as a novel active motif for reducing oxygen to H2O2in an aqueous electrolyte. Although it has a low surface area, the Ni2Mo6S8catalyst exhibits exceptional activity for H2O2synthesis with >90% H2O2molar selectivity across a wide potential range. Chemical titration verified successful generation of H2O2and confirmed rates as high as 90 mmol H2O2gcat−1h−1. The outstanding activities are attributed to the ligand and ensemble effects of Ni that promote H2O dissociation and proton‐coupled reduction of O2to HOO*, and the spatial effect of the Chevrel phase structure that isolates Ni active sites to inhibit OO cleavage. The synergy of these effects delivers fast and selective production of H2O2with high turn‐over frequencies of ≈30 s−1. In addition, the Ni2Mo6S8catalyst has a stable crystal structure that is resistive for oxidation and delivers good catalyst stability for continuous H2O2production. The described Ni‐Mo6S8active motif can unlock new opportunities for designing Earth‐abundant electrocatalysts to tune oxygen reduction for practical H2O2production.

     
    more » « less
  4. Abstract

    The large‐scale hydrogen production and application through electrocatalytic water splitting depends crucially on the development of highly efficient, cost‐effective electrocatalysts for oxygen evolution reaction (OER), which, however, remains challenging. Here, a new electrocatalyst of trimetallic Fe–Co–Ni hydroxide (denoted as FeCoNiOxHy) with a nanotubular structure is developed through an enhanced Kirkendall process under applied potential. The FeCoNiOxHyfeatures synergistic electronic interaction between Fe, Co, and Ni, which not only notably increases the intrinsic OER activity of FeCoNiOxHyby facilitating the formation of *OOH intermediate, but also substantially improves the intrinsic conductivity of FeCoNiOxHyto facilitate charge transfer and activate catalytic sites through electrocatalyst by promoting the formation of abundant Co3+. Therefore, FeCoNiOxHydelivers remarkably accelerated OER kinetics and superior apparent activity, indicated by an ultra‐low overpotential potential of 257 mV at a high current density of 200 mA cm−2. This work is of fundamental and practical significance for synergistic catalysis related to advanced energy conversion materials and technologies.

     
    more » « less
  5. Energy harvesting from solar and water has created ripples in materials energy research for the last several decades, complemented by the rise of Hydrogen as a clean fuel. Among these, water electrolysis leading to generation of oxygen and hydrogen, has been one of the most promising routes towards sustainable alternative energy generation and storage, with applications ranging from metal-​air batteries, fuel cells, to solar-​to-​fuel energy conversion systems. In fact, solar water splitting is one of the most promising method to produce Hydrogen without depleting fossil-​fuel based natural resources. However, the efficiency and practical feasibility of water electrolysis is limited by the anodic oxygen evolution reaction (OER)​, which is a kinetically sluggish, electron-​intensive uphill reaction. A slow OER process also slows the other half- cell reaction, i.e. the hydrogen evolution reaction (HER) at the cathode. Hence, designing efficient catalysts for OER process from earth-​abundant resources has been one of the primary concerns for advancing solar water splitting. In the Nath group we have focused on transition metal chalcogenides as efficient OER electrocatalysts. We have proposed the idea that these chalcogenides, specifically, selenides and tellurides will show much better OER catalytic activity due to increasing covalency around the catalytically active transition metal site, compared to the oxides caused by decreasing electronegativity of the anion, which in turn leads to variation of chem. potential around the transition metal center, [e.g. lowering the Ni 2+ -​-​> Ni 3+ oxidn. potential in Ni-​based catalysts where Ni 3+ is the actually catalytically active species]​. Based on such hypothesis, we have synthesized a plethora of transition metal selenides including those based on Ni, Ni-​Fe, Co, and Ni-​Co, which show high catalytic efficiency characterized by low onset potential and overpotential at 10 mA​/cm 2 [Ni 3 Se 2 - 200 - 290 mV; Co 7 Se 8 - 260 mV; FeNi 2 Se 4 -​NrGO - 170 mV (NrGO - N-​doped reduced graphene oxide)​; NiFe 2 Se 4 - 210 mV; CoNi 2 Se 4 - 190 mV; Ni 3 Te 2 - 180 mV]​. 
    more » « less