skip to main content


Title: The effect of molecular isomerism on the induced circular dichroism of cadmium sulfide quantum dots
Post-synthetic phase transfer ligand exchange has been established as a simple, reliable, and versatile method for the synthesis of chiral, optically active colloidal nanocrystals displaying circular dichroism (CD) and circularly polarized luminescence (CPL). Herein we present a water-free and purification-free cyclohexane → methanol ligand exchange system that led to the synthesis of stable, non-aggregating chiral and fluorescent cadmium sulfide quantum dots (CdS QDs). Absorption and emission studies revealed that the carboxylate capping ligands can tune the band gap by up to 65 meV as well as control the band gap and deep trap emission pathways. The CD data revealed that the addition of a 2nd stereogenic center did not automatically lead to an increase of the CD anisotropy of QDs, but rather match/mismatch cooperativity effects must be considered in the transfer of the chirality from the capping ligands to the achiral nanocrystals. Variation in position of the functional groups as well as the chemical identity of the functional groups impacted both the shape and anisotropy of the induced CD spectra and revealed the importance of the functional groups’ coordination and polarity on the binding geometry and induced chiroptical properties. Finally, we describe the first example where CD spectra of QDs capped with the same ligand and dissolved in the same solvent displayed very different spectral profiles. This work provides deeper insight into induced CD of QDs and paves the path to rational design of chiral nanomaterials.  more » « less
Award ID(s):
1828319
NSF-PAR ID:
10393942
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
9
Issue:
48
ISSN:
2050-7526
Page Range / eLocation ID:
17483 to 17495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Post‐synthesis anion exchange of all‐inorganic cesium lead halide perovskite nanocrystals (CsPbX3NCs, where X=Cl, Br, and/or I) provides a rapid and simple means of tuning their band gap and photoluminescence emission wavelengths. Here we report color‐shifting of CsPbX3nanocrystals induced by a macromolecular source of halide ions, specifically using polystyrene with ammonium halides as pendent groups. This strategy for introducing new halides to the perovskite nanocrystals gave access to perovskite‐polymer hybrid materials as solutions, thin films, or free‐flowing powders. Spectroscopic measurements of the halide‐exchanged nanocrystal products revealed high photoluminescence quantum yields across the visible spectrum, with exchange kinetics that were tunable based on the solution environment, suggesting an aggregation‐inhibited exchange process that affords access to multi‐colored solutions and films.

     
    more » « less
  2. Abstract

    Post‐synthesis anion exchange of all‐inorganic cesium lead halide perovskite nanocrystals (CsPbX3NCs, where X=Cl, Br, and/or I) provides a rapid and simple means of tuning their band gap and photoluminescence emission wavelengths. Here we report color‐shifting of CsPbX3nanocrystals induced by a macromolecular source of halide ions, specifically using polystyrene with ammonium halides as pendent groups. This strategy for introducing new halides to the perovskite nanocrystals gave access to perovskite‐polymer hybrid materials as solutions, thin films, or free‐flowing powders. Spectroscopic measurements of the halide‐exchanged nanocrystal products revealed high photoluminescence quantum yields across the visible spectrum, with exchange kinetics that were tunable based on the solution environment, suggesting an aggregation‐inhibited exchange process that affords access to multi‐colored solutions and films.

     
    more » « less
  3. Abstract

    Mechanistic studies of the morphology of lead halide perovskite nanocrystals (LHP‐NCs) are hampered by a lack of generalizable suitable synthetic strategies and ligand systems. Here, the synthesis of zwitterionic CsPbBr3NCs is presented with controlled anisotropy using a proposed “surface‐selective ligand pairs” strategy. Such a strategy provides a platform to systematically study the binding affinity of capping ligand pairs and the resulting LHP morphologies. By using zwitterionic ligands (ZwL) with varying structures, majority ZwL‐capped LHP NCs with controlled morphology are obtained, including anisotropic nanoplatelets and nanorods, for the first time. Combining experiments with density functional theory calculations, factors that govern the ligand binding on the different surface facets of LHP‐NCs are revealed, including the steric bulkiness of the ligand, the number of binding sites, and the charge distance between binding moieties. This study provides guidance for the further exploration of anisotropic LHP‐NCs.

     
    more » « less
  4. null (Ed.)
    The past decade has witnessed tremendous advances in synthesis of metal halide perovskites and their use for a rich variety of optoelectronics applications. Metal halide perovskite has the general formula ABX 3 , where A is a monovalent cation (which can be either organic ( e.g. , CH 3 NH 3 + (MA), CH(NH 2 ) 2 + (FA)) or inorganic ( e.g. , Cs + )), B is a divalent metal cation (usually Pb 2+ ), and X is a halogen anion (Cl − , Br − , I − ). Particularly, the photoluminescence (PL) properties of metal halide perovskites have garnered much attention due to the recent rapid development of perovskite nanocrystals. The introduction of capping ligands enables the synthesis of colloidal perovskite nanocrystals which offer new insight into dimension-dependent physical properties compared to their bulk counterparts. It is notable that doping and ion substitution represent effective strategies for tailoring the optoelectronic properties ( e.g. , absorption band gap, PL emission, and quantum yield (QY)) and stabilities of perovskite nanocrystals. The doping and ion substitution processes can be performed during or after the synthesis of colloidal nanocrystals by incorporating new A′, B′, or X′ site ions into the A, B, or X sites of ABX 3 perovskites. Interestingly, both isovalent and heterovalent doping and ion substitution can be conducted on colloidal perovskite nanocrystals. In this review, the general background of perovskite nanocrystals synthesis is first introduced. The effects of A-site, B-site, and X-site ionic doping and substitution on the optoelectronic properties and stabilities of colloidal metal halide perovskite nanocrystals are then detailed. Finally, possible applications and future research directions of doped and ion-substituted colloidal perovskite nanocrystals are also discussed. 
    more » « less
  5. Abstract Ceria (CeO 2 ) possesses a distinctive redox property due to a reversible conversion to its nonstoichiometric oxide and has been considered as a promising catalyst in the oxidative coupling of methane. Since a heterogeneously catalytic process usually takes place only on the surface of catalysts, it is reasonably expected that the performance of a catalyst, such as CeO 2 , highly relies on its size- and shape-dependent surface structure. We report our recent progress in achieving exclusive crystal facet-terminated CeO 2 nanocrystals using a shape-controlled synthesis protocol in a one-pot colloidal system. We modified a two-phase solvothermal approach to fabricate cubic and truncated octahedral CeO 2 nanocrystals with a size-control. During the two-phase solvothermal process, we propose that the Ce-precursors transfer from the aqueous layer to the interface of the organic phase, promoted by the capping ligands (as known as phase-transfer catalysts), for the oxidation and nucleation, and subsequently form CeO 2 nanocrystals in the organic layer. As different capping ligands favor binding on diverse crystal facets, tuning the composition of the capping ligand with a precise control could generate nanocrystals that are dominated by a single type of facets with a relatively narrow size distribution. 
    more » « less