skip to main content

This content will become publicly available on June 25, 2023

Title: Evaluation of Durability of 3D-Printed Cementitious Materials for Potential Applications in Structures Exposed to Marine Environments.
The rising interest in 3D-printing of concrete structures for use in marine environments requires development of concrete mixtures with adequate mechanical and durability characteristics. The incorporation of alternative cementitious materials, combined with careful selection of printing parameters has emerged as an effective way of controlling not only the fresh properties and printability of mixtures, but also their mechanical and durability properties. This paper presents the results of various durability related tests performed on 3D-printed mortars, including density, porosity, rate of water absorption and resistance to chloride penetration. Results of these tests indicate that the performance of mortar elements 3D-printed using controlled overlap process was similar to the performance of conventionally cast mortar elements with the same composition. Moreover, the results of the chloride transport related tests obtained from all specimens evaluated during the course of the study indicate low chloride ion penetrability, thus re-affirming that combination of the proposed material and 3D-printing method of fabrication have a potential for producing structural elements for applications in marine environments.
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Third RILEM International Conference on Concrete and Digital Fabrication. DC 2022.
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Following the success of 3D printing with synthetic polymers like ABS, FLA, Nylon, etc., scientists and researchers have been putting efforts into fabricating bio-compatible materials. It has not only broadened the field of bioengineering and manufacturing but also regenerative medicine. Unlike the traditional 3D printing process, additive bio-manufacturing, also known as 3D bio-printing has a lot of challenges like cell survivability and proliferation, and the mechanical properties of the biomaterials which involve printability and the ability to hold its structural integrity. Proper design of experiments with extensive rheological investigation can help identify useful mechanical property ranges which are directly related to the geometric fidelity of 3D bio-printed scaffolds. Therefore, to investigate the printability of a low viscosity Alginate-Carboxymethyl Cellulose (CMC), multiple concentrations of the mixture were tested maintaining a 8% (w/v) solid content. A set of rheological tests such as the Steady Rate Sweep Test, Three Point Thixotropic Test (3ITT), and Amplitude test were performed. The outcome of those tests showed that the rheological properties can be controlled with the percentage of CMC in the mixtures. The fabricated filaments and scaffolds in the 5 combinations of CMC percentages were analyzed for flowability and shape fidelity. The rheological results andmore »the printability and shape fidelity results were analyzed.

    « less
  2. Flame-retardant and thermal management structures have attracted great attention due to the requirement of high-temperature exposure in industrial, aerospace, and thermal power fields, but the development of protective fire-retardant structures with complex shapes to fit arbitrary surfaces is still challenging. Herein, we reported a rotation-blade casting-assisted 3D printing process to fabricate nacre-inspired structures with exceptional mechanical and flame-retardant properties, and the related fundamental mechanisms are studied. 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) modified boron nitride nanoplatelets (BNs) were aligned by rotation-blade casting during the 3D printing process to build the “brick and mortar” architecture. The 3D printed structures are more lightweight, while having higher fracture toughness than the natural nacre, which is attributed to the crack deflection, aligned BN (a-BNs) bridging, and pull-outs reinforced structures by the covalent bonding between TMSPMA grafted a-BNs and polymer matrix. Thermal conductivity is enhanced by 25.5 times compared with pure polymer and 5.8 times of anisotropy due to the interconnection of a-BNs. 3D printed heat-exchange structures with vertically aligned BNs in complex shapes were demonstrated for efficient thermal control of high-power light-emitting diodes. 3D printed helmet and armor with a-BNs show exceptional mechanical and fire-retardant properties, demonstrating integrated mechanical and thermal protection.
  3. Abstract The macro-porous ceramics has promising durability and thermal insulation performance. As porous ceramics find more and more applications across many industries, a cost-effective and scalable additive manufacturing technique for fabricating macro-porous ceramics is highly desirable. Herein, we reported a facile additive manufacturing approach to fabricate porous ceramics and control the printed porosity. Several printable ceramic inks were prepared, and the foaming agent was added to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. A set of experimental studies were performed to optimize the printing quality. The results revealed the optimal process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enables the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics possessed enhanced durability with the addition of fiber. With a high-fidelity three-dimensional (3D) printing process and the precise controllability of the porosity, we showed that the printed samples exhibited a remarkably low thermal conductivity and durable mechanical strength.
  4. Abstract

    Different particle properties, such as shape, size, surface roughness, and constituent material stiffness, affect the mechanical behavior of coarse-grained soils. Systematic investigation of the individual effects of these properties requires careful control over other properties, which is a pervasive challenge in investigations with natural soils. The rapid advance of 3D printing technology provides the ability to produce analog particles with independent control over particle size and shape. This study examines the triaxial compression behavior of specimens of 3D printed sand particles and compares it to that of natural sand specimens. Drained and undrained isotropically-consolidated triaxial compression tests were performed on specimens composed of angular and rounded 3D printed and natural sands. The test results indicate that the 3D printed sands exhibit stress-dilatancy behavior that follows well-established flow rules, the angular 3D printed sand mobilizes greater critical state friction angle than that of rounded 3D printed sand, and analogous drained and undrained stress paths can be followed by 3D printed and natural sands with similar initial void ratios if the cell pressure is scaled. The results suggest that some of the fundamental behaviors of soils can be captured with 3D printed soils, and that the interpretation of their mechanical responsemore »can be captured with the critical state soil mechanics framework. However, important differences in response arise from the 3D printing process and the smaller stiffness of the printed polymeric material.

    Graphic abstract

    Artificial sand analogs were 3D printed from X-ray CT scans of sub-rounded and sub-angular natural sands. Triaxial compression tests were performed to characterize the strength and dilatancy behavior as well as critical staste parameters of the 3D printed sands and to compare it to that exhibited by the natural sands.

    « less
  5. Large-scale concrete 3D printing and digital construction has brought enormous potential to expand the design space of building components (e.g., building envelope) for the integration of multiple architectural functionalities including energy saving. In this research, a modular 3D printed vertical concrete green wall system – namely the 3D-VtGW, was developed. The 3D-VtGW envelope was assembled with prefabricated (3D printed) multifunctional wall modular elements, which serves as the enclosure of the building as well as the backbone for a green wall system to improve building’s energy efficiency. Using this design concept and large-scale concrete 3D printing, a prototype commercial building was built in Nanjing, China. To quantify the energy-saving potential of the 3D-VtGW system, a thermal network model was developed to simulate the thermal behavior of buildings with 3D-VtGW system and for thermal comfort analysis. Whole-building energy simulation was carried out using Chinese Standard Weather Data (CSWD) o Nanjing, China. The simulation results indicate that the building with 3D-VtGW exhibited prominent potential for energy saving and improved thermal comfort. The integrated greenery system in 3D-VtGW largely reduces wall exterior surface temperature and through-wall heat flux via the combined effects of plant shading, evapotranspiration, and heat storage from soil. This study presentsmore »the immense opportunities brought by digital fabrication and construction to extend the design space and function integration in buildings.« less