skip to main content


Title: A surplus no more? Variation in krill availability impacts reproductive rates of Antarctic baleen whales
Abstract

The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human‐induced changes. Understanding how climate‐mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8‐year dataset (2013–2020), we show that inter‐annual humpback whale pregnancy rates, as determined from skin‐blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter‐annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region.

 
more » « less
Award ID(s):
2026045
NSF-PAR ID:
10391428
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
29
Issue:
8
ISSN:
1354-1013
Page Range / eLocation ID:
p. 2108-2121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding how closely related, sympatric species distribute themselves relative to their environment is critical to understanding ecosystem structure and function and predicting effects of environmental variation. The Antarctic Peninsula supports high densities of krill and krill consumers; however, the region is warming rapidly, with unknown consequences. Humpback whales Megaptera novaeangliae and Antarctic minke whales Balaenoptera bonaerensis are the largest krill consumers here, yet key data gaps remain about their distribution, behavior, and interactions and how these will be impacted by changing conditions. Using satellite telemetry and novel spatial point-process modeling techniques, we quantified habitat use of each species relative to dynamic environmental variables and determined overlap in core habitat areas during summer months when sea ice is at a minimum. We found that humpback whales ranged broadly over continental shelf waters, utilizing nearshore bays, while minke whales restricted their movements to sheltered bays and areas where ice is present. This presents a scenario where minke whale core habitat overlaps substantially with the broader home ranges of humpback whales. While there is no indication that prey is limiting in this ecosystem, increased overlap between these species may arise as climate-driven changes that affect the extent, timing, and duration of seasonal sea ice decrease the amount of preferred foraging habitat for minke whales while concurrently increasing it for humpback whales. Our results provide the first quantitative assessment of behaviorally based habitat use and sympatry between these 2 krill consumers and offers insight into the potential effects of a rapidly changing environment on the structure and function of a polar ecosystem. 
    more » « less
  2. The unique engulfment filtration strategy of microphagous rorqual whales has evolved relatively recently (<5 Ma) and exploits extreme predator/prey size ratios to overcome the maneuverability advantages of swarms of small prey, such as krill. Forage fish, in contrast, have been engaged in evolutionary arms races with their predators for more than 100 million years and have performance capabilities that suggest they should easily evade whale-sized predators, yet they are regularly hunted by some species of rorqual whales. To explore this phenomenon, we determined, in a laboratory setting, when individual anchovies initiated escape from virtually approaching whales, then used these results along with in situ humpback whale attack data to model how predator speed and engulfment timing affected capture rates. Anchovies were found to respond to approaching visual looming stimuli at expansion rates that give ample chance to escape from a sea lion-sized predator, but humpback whales could capture as much as 30–60% of a school at once because the increase in their apparent (visual) size does not cross their prey’s response threshold until after rapid jaw expansion. Humpback whales are, thus, incentivized to delay engulfment until they are very close to a prey school, even if this results in higher hydrodynamic drag. This potential exaptation of a microphagous filter feeding strategy for fish foraging enables humpback whales to achieve 7× the energetic efficiency (per lunge) of krill foraging, allowing for flexible foraging strategies that may underlie their ecological success in fluctuating oceanic conditions.

     
    more » « less
  3. Ummenhofer, Caroline (Ed.)
    Changes in gray whale ( Eschrichtius robustus ) phenology and distribution are related to observed and hypothesized prey availability, bottom water temperature, salinity, sea ice persistence, integrated water column and sediment chlorophyll a , and patterns of wind-driven biophysical forcing in the northern Bering and eastern Chukchi seas. This portion of the Pacific Arctic includes four Distributed Biological Observatory (DBO) sampling regions. In the Bering Strait area, passive acoustic data showed marked declines in gray whale calling activity coincident with unprecedented wintertime sea ice loss there in 2017–2019, although some whales were seen there during DBO cruises in those years. In the northern Bering Sea, sightings during DBO cruises show changes in gray whale distribution coincident with a shrinking field of infaunal amphipods, with a significant decrease in prey abundance (r = -0.314, p<0.05) observed in the DBO 2 region over the 2010–2019 period. In the eastern Chukchi Sea, sightings during broad scale aerial surveys show that gray whale distribution is associated with localized areas of high infaunal crustacean abundance. Although infaunal crustacean prey abundance was unchanged in DBO regions 3, 4 and 5, a mid-decade shift in gray whale distribution corresponded to both: (i) a localized increase in infaunal prey abundance in DBO regions 4 and 5, and (ii) a correlation of whale relative abundance with wind patterns that can influence epi-benthic and pelagic prey availability. Specifically, in the northeastern Chukchi Sea, increased sighting rates (whales/km) associated with an ~110 km (60 nm) offshore shift in distribution was positively correlated with large scale and local wind patterns conducive to increased availability of krill. In the southern Chukchi Sea, gray whale distribution clustered in all years near an amphipod-krill ‘hotspot’ associated with a 50-60m deep trough. We discuss potential impacts of observed and inferred prey shifts on gray whale nutrition in the context of an ongoing unusual gray whale mortality event. To conclude, we use the conceptual Arctic Marine Pulses (AMP) model to frame hypotheses that may guide future research on whales in the Pacific Arctic marine ecosystem. 
    more » « less
  4. Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem. 
    more » « less
  5. Abstract

    Antarctic krill (Euphausia superba) are considered a keystone species for higher trophic level predators along the West Antarctic Peninsula (WAP) during the austral summer. The connectivity of krill may play a critical role in predator biogeography, especially for central-place foragers such as thePygoscelisspp. penguins that breed along the WAP during the austral summer. Antarctic krill are also heavily fished commercially; therefore, understanding population connectivity of krill is critical to effective management. Here, we used a physical ocean model to examine adult krill connectivity in this region using simulated krill with realistic diel vertical migration behaviors across four austral summers. Our results indicate that krill north and south of Low Island and the southern Bransfield Strait are nearly isolated from each other and that persistent current features play a role in this lack of inter-region connectivity. Transit and entrainment times were not correlated with penguin populations at the large spatial scales examined. However, long transit times and reduced entrainment correlate spatially with the areas where krill fishing is most intense, which heightens the risk that krill fishing may lead to limited krill availability for predators.

     
    more » « less