Abstract Understanding reproductive physiology in mysticetes has been slowed by the lack of repeated samples from individuals. Analysis of humpback whale baleen enables retrospective hormone analysis within individuals dating back 3–5 years before death. Using this method, we investigated differences in four steroid hormones involved in reproduction and mating during confirmed pregnant and non-pregnant periods in two female humpback whales (Megaptera novaeangliae) with known reproductive histories based on sightings and necropsy data. Cortisol, corticosterone, testosterone, and estradiol concentrations were determined via enzyme immunoassay using subsamples of each baleen plate at 2 cm intervals. There were no significant differences in cortisol or corticosterone during pregnancy when compared to non-pregnancy (inter-calving interval), but there were significant differences between the two whales in average glucocorticoid concentrations, with the younger whale showing higher values overall. For testosterone, levels for the younger female peaked at parturition in one pregnancy, but also had spikes during non-pregnancy. The older female had three large spikes in testosterone, one of which was associated with parturition. Estradiol had large fluctuations in both whales but had generally lower concentrations during non-pregnancy than during pregnancy. There were peaks in estradiol before each pregnancy, possibly coinciding with ovulation, and peaks coinciding with the month of parturition. Both estradiol and testosterone could be useful for determining ovulation or impending birth. Using baleen to investigate retrospective steroid hormone profiles can be used for elucidating long-term patterns of physiological change during gestation. Lay summary Case studies of two pregnant humpback whales whose hormones were analyzed in baleen may illuminate when humpback whales ovulate, gestate, and give birth. These physiological metrics could assist in accurate population growth assessments and conservation of the species. This study shows that baleen hormone analysis can be a useful tool for understanding whale reproductive physiology. 
                        more » 
                        « less   
                    
                            
                            Variation in blubber cortisol levels in a recovering humpback whale population inhabiting a rapidly changing environment
                        
                    
    
            Abstract Glucocorticoids are regularly used as biomarkers of relative health for individuals and populations. Around the Western Antarctic Peninsula (WAP), baleen whales have and continue to experience threats, including commercial harvest, prey limitations and habitat change driven by rapid warming, and increased human presence via ecotourism. Here, we measured demographic variation and differences across the foraging season in blubber cortisol levels of humpback whales (Megaptera novaeangliae) over two years around the WAP. Cortisol concentrations were determined from 305 biopsy samples of unique individuals. We found no significant difference in the cortisol concentration between male and female whales. However, we observed significant differences across demographic groups of females and a significant decrease in the population across the feeding season. We also assessed whether COVID-19-related reductions in tourism in 2021 along the WAP correlated with lower cortisol levels across the population. The decline in vessel presence in 2021 was associated with a significant decrease in humpback whale blubber cortisol concentrations at the population level. Our findings provide critical contextual data on how these hormones vary naturally in a population over time, show direct associations between cortisol levels and human presence, and will enable comparisons among species experiencing different levels of human disturbance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2026045
- PAR ID:
- 10516048
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human‐induced changes. Understanding how climate‐mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8‐year dataset (2013–2020), we show that inter‐annual humpback whale pregnancy rates, as determined from skin‐blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter‐annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region.more » « less
- 
            Cooke, Steven (Ed.)Abstract Baleen whales are subject to a myriad of natural and anthropogenic stressors, but understanding how these stressors affect physiology is difficult. Measurement of adrenal glucocorticoid (GC) hormones involved in the vertebrate stress response (cortisol and corticosterone) in baleen could help fill this data gap. Baleen analysis is a powerful tool, allowing for a retrospective re-creation of multiple years of GC hormone concentrations at approximately a monthly resolution. We hypothesized that whales that died from acute causes (e.g. ship strike) would have lower levels of baleen GCs than whales that died from extended illness or injury (e.g. long-term entanglement in fishing gear). To test this hypothesis, we extracted hormones from baleen plates of four humpback whales (Megaptera novaeangliae) with well-documented deaths including multiple and chronic entanglements (n = 1, female), ship strike (n = 2, male and female) and chronic illness with nutritional stress (n = 1, male). Over ~3 years of baleen growth and during multiple entanglements, the entangled whale had average corticosterone levels of 80–187% higher than the other three whales but cortisol levels were similar to two of the other three whales. The nutritionally stressed and chronically ill whale showed a slow increase in both cortisol and corticosterone spanning ~3 years, followed by a sharp decline in both hormones before death, possibly indicative of adrenal failure in this moribund individual. This whale’s correlation between cortisol and corticosterone was significant but there were no correlations in the other three whales. Our results show that cortisol and corticosterone concentrations vary according to the type and duration of illness or injury. Single-point GC concentrations should be interpreted with caution as low values can occur in whales experiencing pronounced stress and individual baselines can be highly variable. Baleen analysis is a promising tissue type for retrospective analyses of physiological responses to various stressors affecting baleen whales.more » « less
- 
            Antarctic humpback whales forage in summer, coincident with the seasonal abundance of their primary prey, the Antarctic krill. During the feeding season, humpback whales accumulate energy stores sufficient to fuel their fasting period lasting over six months. Previous animal movement modelling work (using area-restricted search as a proxy) suggests a hyperphagic period late in the feeding season, similar in timing to some terrestrial fasting mammals. However, no direct measures of seasonal foraging behaviour existed to corroborate this hypothesis. We attached high-resolution, motion-sensing biologging tags to 69 humpback whales along the Western Antarctic Peninsula throughout the feeding season from January to June to determine how foraging effort changes throughout the season. Our results did not support existing hypotheses: we found a significant reduction in foraging presence and feeding rates from the beginning to the end of the feeding season. During the early summer period, feeding occurred during all hours at high rates. As the season progressed, foraging occurred mostly at night and at lower rates. We provide novel information on seasonal changes in foraging of humpback whales and suggest that these animals, contrary to nearly all other animals that seasonally fast, exhibit high feeding rates soon after exiting the fasting periodmore » « less
- 
            ABSTRACT ObjectivesThe impacts of stress on inflammation, although hypothesized, have not been thoroughly examined, especially in relation to social and environmental factors and particularly within Black populations. This study aims to explore the biological mechanisms of embodiment linking stress and health to understand physiological changes in the body's response to psychological stress in a Nigerian population. Through a multidisciplinary approach, this study queries the relationship between stress, cortisol, and salivary C‐reactive protein (sCRP), a biomarker of inflammation, while also validating the use of sCRP as a potential and accurate stress indicator in the field. MethodsIn this cross‐sectional study, 138 passive drool saliva samples (nfemale = 89nmale = 49) were collected and assessed for sCRP and cortisol levels in adults. Participants also completed a short demographic survey and, to measure psychological stress, the General Health Questionnaire 12 (GHQ‐12). Relationships between sCRP and stress‐related variables (i.e., cortisol, GHQ‐12, and demographic data) were assessed using Spearman's correlations, simple regression, multivariable linear regression, and exploratory factor analysis. ResultssCRP levels ranged from 20.57 to 6879.41 pg/mL across all samples, with significant differences between female and male participants. The GHQ‐12 was not a significant predictor of sCRP variability. However, socio‐demographic factors such as body mass index (BMI), age, self‐reported sex, ethnic identity, and cortisol were significant predictors, collectively explaining 24%–27% of the variation in sCRP. ConclusionSocio‐demographic predictors like BMI, age, sex, and particularly ethnic group experience in Nigeria encapsulate aspects of embodied stress, that significantly affect sCRP variability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    