A report summarizing the “Keeping Data Science Broad” series including data science challenges, visions for the future, and community asks. The goal of the Keeping Data Science Broad series was to garner community input into pathways for keeping data science education broadly inclusive across sectors, institutions, and populations. Input was collected from a community input survey, three webinars (Data Science in the Traditional Context, Alternative Avenues for Development of Data Science Education Capacity, and Big Picture for a Big Data Science Education Network available to view through the South Big Data Hub YouTube channel) and an interactive workshop (Negotiating the Digital and Data Divide). Through these venues, we explore the future of data science education and workforce at institutions of higher learning that are primarily teaching-focused. The workshop included representatives from sixty data science programs across the nation, either traditional or alternative, and from a range of institution types including community colleges, Historically Black Colleges and Universities (HBCU’s), Hispanic-Serving Institutions (HSI’s), other minority-led and minority-serving institutions, liberal arts colleges, tribal colleges, universities, and industry partners.
more »
« less
Trends of systems engineering job postings and their implications for curriculum development
Recent studies in systems engineering indicate that the design, development, and management of systems will continue increasing in complexity. The foreseen growth is expected as future capabilities require understanding the system and its operating environment, adapting to rapid-changing scenarios, integrating more independent hardware and software elements, coordinating with multiple stakeholders across the system’s lifecycle, among others. To develop the next generation of systems, alignment between industry needs and curricula from higher-education institutions should exist. Therefore, this research contributes to the human capital development of systems engineering in the United States by exploring current job opportunities and their relationship to existing academic offerings in Hispanic-Serving Institutions. The study analyzes job openings from INCOSE’s CAB Members to capture current needs in terms of role description lifecycle experience, tools and methodologies needed in the job market, and it explores the relationship of systems engineering methodologies covered in Hispanic-Serving Institutions. The outcome of this research provides a direction to support the development, adoption, and update of higher-education systems engineering curriculum that aligns with current industry needs.
more »
« less
- Award ID(s):
- 1952634
- PAR ID:
- 10391495
- Date Published:
- Journal Name:
- 2022 ASEE Annual Conference & Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rapid research progress in science and technology (S&T) and continuously shifting workforce needs exert pressure on each other and on the educational and training systems that link them. Higher education institutions aim to equip new generations of students with skills and expertise relevant to workforce participation for decades to come, but their offerings sometimes misalign with commercial needs and new techniques forged at the frontiers of research. Here, we analyze and visualize the dynamic skill (mis-)alignment between academic push, industry pull, and educational offerings, paying special attention to the rapidly emerging areas of data science and data engineering (DS/DE). The visualizations and computational models presented here can help key decision makers understand the evolving structure of skills so that they can craft educational programs that serve workforce needs. Our study uses millions of publications, course syllabi, and job advertisements published between 2010 and 2016. We show how courses mediate between research and jobs. We also discover responsiveness in the academic, educational, and industrial system in how skill demands from industry are as likely to drive skill attention in research as the converse. Finally, we reveal the increasing importance of uniquely human skills, such as communication, negotiation, and persuasion. These skills are currently underexamined in research and undersupplied through education for the labor market. In an increasingly data-driven economy, the demand for “soft” social skills, like teamwork and communication, increase with greater demand for “hard” technical skills and tools.more » « less
-
Improving the level of success of students from low socioeconomic backgrounds in science, technology, engineering, and mathematics (STEM) disciplines has been a prevailing concern for higher education institutions for many years. To address this challenge, a pilot initiative has been implemented with engineering students at the University of Puerto Rico Mayaguez, a recognized Hispanic-serving institution. Over the past four years, the Program for Engineering Access, Retention, and LIATS Success (PEARLS) has brought in an innovative intervention model that combines elements from socio-cognitive career theories and departure studies to impact students' success. PEARLS has established a comprehensive range of tools and services, including mentorship, professional readiness training, research opportunities, scholarships, and peer mentor activities. These efforts have led to impressive outcomes, including a significant increase in retention and persistence rates, increased graduation rates having quad-fold those observed in the general student population, and an impressive record of engagements in industry, research, and leadership experiences. This paper discusses the program structure and outcomes from five perspectives that include background experiences, the structure of provided services, the results of their execution, the elements of knowledge derived from its application, and the challenges experienced throughout its implementation.more » « less
-
Contribution: This study explores the factors contributing to the development of engineering identity in Latinx students at two institutions. A better understanding of these factors will support the development of more inclusive engineering education environments and experiences. Background: Persistence of Latinx engineering students is of particular interest due to their underrepresentation in the field. Identity is a lens for understanding student persistence, but Latinx students are underrepresented in prior engineering identity studies. This study seeks to identify the unique factors, academic and professional, that contribute to engineering identity development, and potential means for supporting the persistence of Latinx engineers. Research Questions: (1) What academic and professional affect factors predict engineering identity development of Latinx students? and (2) What role does the institution play in Latinx students’ engineering identity development? Methodology: A mixed-methods approach was used to measure engineering identity based on a framework incorporating both academic and professional affect elements. Regression analyses were conducted on 892 responses to an online survey from Latinx engineering students, with additional insight from interviews with ten Latinx engineering students. Findings: Six of the nine factors analyzed (performance/competence, interest, recognition, analysis, framing and solving problems, and tinkering) were significant predictors of Latinx students' engineering identity, as were institution, gender, and having a parent with an engineering degree. Engineering identity was higher for Latinx students at the Hispanic Serving Institution, but none of the interaction terms were significant, so the relationship between these factors and engineering identity is similar at each institution.more » « less
-
The AMPLIFY project, funded through the NSF HSI Program, seeks to amplify the educational change leadership of Engineering Instructional Faculty (EIF) working at Hispanic Serving Institutions (HSIs). HSIs are public or private institutions of higher education enrolling over 25% full-time undergraduate Hispanic or Latinx-identifying students [1]. Many HSIs are exemplars of developing culturally responsive learning environments and supporting the persistence and access of Latinx engineering students, as well as students who identify as members of other marginalized populations [2]. Our interest in the EIF population at HSIs arises from the growing body of literature indicating that these faculty play a central role in educational change through targeted initiatives, such as student-centered support programs and the use of inclusive curricula that connect to their students’ cultural identities [3]–[7]. Our research focuses on exploring methods for amplifying the engineering educational change efforts at HSIs by 1) making visible the experiences of engineering instructional faculty at HSIs and 2) designing, implementing, and evaluating a leadership development model for engineering instructional faculty, thereby 3) equipping and supporting these faculty as they lead educational change efforts. To achieve these goals, our project team, comprising educational researchers, engineering instructional faculty, instructional designers, and graduate students from three HSIs (two majority-minority and one emerging HSI), seeks to address the following research questions: 1) What factors impact the self-efficacy and agency of EIF at HSIs to engage in educational change initiatives that encourage culturally responsive, evidence-based teaching within their classrooms, institutions, or beyond? 2) What are the necessary competencies for EIF to be leaders of this sort of educational change? 3) What individual, institutional, and professional development program features support the educational change leadership development of EIF at HSIs? 4) How does engagement in leadership development programming impact EIF educational leadership self-efficacy and agency toward developing and using culturally responsive and evidence-based approaches at HSIs? This multi-year project uses various qualitative, quantitative, and participatory research methods embedded in a series of action research cycles to provide a richer understanding of the successes and needs of EIF at HSIs [8]. The subsequent design and implementation of the AMPLIFY Institute will make visible the features and content of instructional faculty development programs that promote educational innovation at HSIs and foster a deeper understanding of the framework's impact on faculty innovation and leadership.more » « less
An official website of the United States government

