skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fair Classification with Instance-dependent Label Noise
With the widespread use of machine learning systems in our daily lives, it is important to consider fairness as a basic requirement when designing these systems, especially when the systems make life-changing decisions, e.g., \textit{COMPAS} algorithm helps judges decide whether to release an offender. For another thing, due to the cheap but imperfect data collection methods, such as crowdsourcing and web crawling, label noise is ubiquitous, which unfortunately makes fairness-aware algorithms even more prejudiced than fairness-unaware ones, and thereby harmful. To tackle these problems, we provide general frameworks for learning fair classifiers with \textit{instance-dependent label noise}. For statistical fairness notions, we rewrite the classification risk and the fairness metric in terms of noisy data and thereby build robust classifiers. For the causality-based fairness notion, we exploit the internal causal structure of data to model the label noise and \textit{counterfactual fairness} simultaneously. Experimental results demonstrate the effectiveness of the proposed methods on real-world datasets with controllable synthetic label noise.  more » « less
Award ID(s):
2007951 2040800
PAR ID:
10391570
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
First Conference on Causal Learning and Reasoning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we answer the question of when inserting label noise (less informative labels) can instead return us more accurate and fair models. We are primarily inspired by three observations: 1) In contrast to reducing label noise rates, increasing the noise rates is easy to implement; 2) Increasing a certain class of instances' label noise to balance the noise rates (increasing-to-balancing) results in an easier learning problem; 3) Increasing-to-balancing improves fairness guarantees against label bias. In this paper, we first quantify the trade-offs introduced by increasing a certain group of instances' label noise rate w.r.t. the loss of label informativeness and the lowered learning difficulties. We analytically demonstrate when such an increase is beneficial, in terms of either improved generalization power or the fairness guarantees. Then we present a method to insert label noise properly for the task of learning with noisy labels, either without or with a fairness constraint. The primary technical challenge we face is due to the fact that we would not know which data instances are suffering from higher noise, and we would not have the ground truth labels to verify any possible hypothesis. We propose a detection method that informs us which group of labels might suffer from higher noise without using ground truth labels. We formally establish the effectiveness of the proposed solution and demonstrate it with extensive experiments. 
    more » « less
  2. With the prevalence of machine learning in many high-stakes decision-making processes, e.g., hiring and admission, it is important to take fairness into account when practitioners design and deploy machine learning models, especially in scenarios with imperfectly labeled data. Multiple-Instance Learning (MIL) is a weakly supervised approach where instances are grouped in labeled bags, each containing several instances sharing the same label. However, current fairness-centric methods in machine learning often fall short when applied to MIL due to their reliance on instance-level labels. In this work, we introduce a Fair Multiple-Instance Learning (FMIL) framework to ensure fairness in weakly supervised learning. In particular, our method bridges the gap between bag-level and instance-level labeling by leveraging the bag labels, inferring high-confidence instance labels to improve both accuracy and fairness in MIL classifiers. Comprehensive experiments underscore that our FMIL framework substantially reduces biases in MIL without compromising accuracy. 
    more » « less
  3. Recent years have witnessed increasing concerns towards unfair decisions made by machine learning algorithms. To improve fairness in model decisions, various fairness notions have been proposed and many fairness-aware methods are developed. However, most of existing definitions and methods focus only on single-label classification. Fairness for multi-label classification, where each instance is associated with more than one labels, is still yet to establish. To fill this gap, we study fairness-aware multi-label classification in this paper. We start by extending Demographic Parity (DP) and Equalized Opportunity (EOp), two popular fairness notions, to multi-label classification scenarios. Through a systematic study, we show that on multi-label data, because of unevenly distributed labels, EOp usually fails to construct a reliable estimate on labels with few instances. We then propose a new framework named Similarity s-induced Fairness (sγ -SimFair). This new framework utilizes data that have similar labels when estimating fairness on a particular label group for better stability, and can unify DP and EOp. Theoretical analysis and experimental results on real-world datasets together demonstrate the advantage of sγ -SimFair over existing methods on multi-label classification tasks. 
    more » « less
  4. Noisy training labels can hurt model performance. Most approaches that aim to address label noise assume label noise is independent from the input features. In practice, however, label noise is often feature or \textit{instance-dependent}, and therefore biased (i.e., some instances are more likely to be mislabeled than others). E.g., in clinical care, female patients are more likely to be under-diagnosed for cardiovascular disease compared to male patients. Approaches that ignore this dependence can produce models with poor discriminative performance, and in many healthcare settings, can exacerbate issues around health disparities. In light of these limitations, we propose a two-stage approach to learn in the presence instance-dependent label noise. Our approach utilizes \textit{\anchor points}, a small subset of data for which we know the observed and ground truth labels. On several tasks, our approach leads to consistent improvements over the state-of-the-art in discriminative performance (AUROC) while mitigating bias (area under the equalized odds curve, AUEOC). For example, when predicting acute respiratory failure onset on the MIMIC-III dataset, our approach achieves a harmonic mean (AUROC and AUEOC) of 0.84 (SD [standard deviation] 0.01) while that of the next best baseline is 0.81 (SD 0.01). Overall, our approach improves accuracy while mitigating potential bias compared to existing approaches in the presence of instance-dependent label noise. 
    more » « less
  5. We consider the vulnerability of fairness-constrained learning to malicious noise in the training data. Konstantinov and Lampert (2021) initiated the study of this question and proved that any proper learner can exhibit high vulnerability when group sizes are imbalanced. Here, we present a more optimistic view, showing that if we allow randomized classifiers, then the landscape is much more nuanced. For example, for Demographic Parity we need only incur a Θ(α) loss in accuracy, where α is the malicious noise rate, matching the best possible even without fairness constraints. For Equal Opportunity, we show we can incur an O(sqrt(α)) loss, and give a matching Ω(sqrt(α)) lower bound. For Equalized Odds and Predictive Parity, however, and adversary can indeed force an Ω(1) loss. The key technical novelty of our work is how randomization can bypass simple 'tricks' an adversary can use to amplify its power. These results provide a more fine-grained view of the sensitivity of fairness-constrained learning to adversarial noise in training data. 
    more » « less