skip to main content


Search for: All records

Award ID contains: 2040800

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 22, 2025
  2. Free, publicly-accessible full text available February 22, 2025
  3. Free, publicly-accessible full text available February 22, 2025
  4. Free, publicly-accessible full text available December 6, 2024
  5. The increasing automation of high-stakes decisions with direct impact on the lives and well-being of individuals raises a number of important considerations. Prominent among these is strategic behavior by individuals hoping to achieve a more desirable outcome. Two forms of such behavior are commonly studied: 1) misreporting of individual attributes, and 2) recourse, or actions that truly change such attributes. The former involves deception, and is inherently undesirable, whereas the latter may well be a desirable goal insofar as it changes true individual qualification. We study misreporting and recourse as strategic choices by individuals within a unified framework. In particular, we propose auditing as a means to incentivize recourse actions over attribute manipulation, and characterize optimal audit policies for two types of principals, utility-maximizing and recourse-maximizing. Additionally, we consider subsidies as an incentive for recourse over manipulation, and show that even a utility-maximizing principal would be willing to devote a considerable amount of audit budget to providing such subsidies. Finally, we consider the problem of optimizing fines for failed audits, and bound the total cost incurred by the population as a result of audits. 
    more » « less
    Free, publicly-accessible full text available August 22, 2024
  6. Free, publicly-accessible full text available August 8, 2024
  7. Free, publicly-accessible full text available August 8, 2024
  8. The use of AI-based decision aids in diverse domains has inspired many empirical investigations into how AI models’ decision recommendations impact humans’ decision accuracy in AI-assisted decision making, while explorations on the impacts on humans’ decision fairness are largely lacking despite their clear importance. In this paper, using a real-world business decision making scenario—bidding in rental housing markets—as our testbed, we present an experimental study on understanding how the bias level of the AI-based decision aid as well as the provision of AI explanations affect the fairness level of humans’ decisions, both during and after their usage of the decision aid. Our results suggest that when people are assisted by an AI-based decision aid, both the higher level of racial biases the decision aid exhibits and surprisingly, the presence of AI explanations, result in more unfair human decisions across racial groups. Moreover, these impacts are partly made through triggering humans’ “disparate interactions” with AI. However, regardless of the AI bias level and the presence of AI explanations, when people return to make independent decisions after their usage of the AI-based decision aid, their decisions no longer exhibit significant unfairness across racial groups.

     
    more » « less
  9. Given an algorithmic predictor that is accurate on some source population consisting of strategic human decision subjects, will it remain accurate if the population respond to it? In our setting, an agent or a user corresponds to a sample (X,Y) drawn from a distribution  and will face a model h and its classification result h(X). Agents can modify X to adapt to h, which will incur a distribution shift on (X,Y). Our formulation is motivated by applications where the deployed machine learning models are subjected to human agents, and will ultimately face responsive and interactive data distributions. We formalize the discussions of the transferability of a model by studying how the performance of the model trained on the available source distribution (data) would translate to the performance on its induced domain. We provide both upper bounds for the performance gap due to the induced domain shift, as well as lower bounds for the trade-offs that a classifier has to suffer on either the source training distribution or the induced target distribution. We provide further instantiated analysis for two popular domain adaptation settings, including covariate shift and target shift. 
    more » « less
    Free, publicly-accessible full text available July 24, 2024
  10. Although many fairness criteria have been proposed to ensure that machine learning algorithms do not exhibit or amplify our existing social biases, these algorithms are trained on datasets that can themselves be statistically biased. In this paper, we investigate the robustness of existing (demographic) fairness criteria when the algorithm is trained on biased data. We consider two forms of dataset bias: errors by prior decision makers in the labeling process, and errors in the measurement of the features of disadvantaged individuals. We analytically show that some constraints (such as Demographic Parity) can remain robust when facing certain statistical biases, while others (such as Equalized Odds) are significantly violated if trained on biased data. We provide numerical experiments based on three real-world datasets (the FICO, Adult, and German credit score datasets) supporting our analytical findings. While fairness criteria are primarily chosen under normative considerations in practice, our results show that naively applying a fairness constraint can lead to not only a loss in utility for the decision maker, but more severe unfairness when data bias exists. Thus, understanding how fairness criteria react to different forms of data bias presents a critical guideline for choosing among existing fairness criteria, or for proposing new criteria, when available datasets may be biased. 
    more » « less
    Free, publicly-accessible full text available June 26, 2024