Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 10, 2025
- 
            Performative prediction, as introduced by Perdomo et al, is a framework for studying social prediction in which the data distribution itself changes in response to the deployment of a model. Existing work in this field usually hinges on three assumptions that are easily violated in practice: that the performative risk is convex over the deployed model, that the mapping from the model to the data distribution is known to the model designer in advance, and the first-order information of the performative risk is available. In this paper, we initiate the study of performative prediction problems that do not require these assumptions. Specifically, we develop a reparameterization framework that reparametrizes the performative prediction objective as a function of the induced data distribution. We then develop a two-level zeroth-order optimization procedure, where the first level performs iterative optimization on the distribution parameter space, and the second level learns the model that induces a particular target distribution at each iteration. Under mild conditions, this reparameterization allows us to transform the non-convex objective into a convex one and achieve provable regret guarantees. In particular, we provide a regret bound that is sublinear in the total number of performative samples taken and is only polynomial in the dimension of the model parameter.more » « less
- 
            We reveal and address the frequently overlooked yet important issue of disguised procedural unfairness, namely, the potentially inadvertent alterations on the behavior of neutral (i.e., not problematic) aspects of data generating process, and/or the lack of procedural assurance of the greatest benefit of the least advantaged individuals. Inspired by John Rawls's advocacy for pure procedural justice, we view automated decision-making as a microcosm of social institutions, and consider how the data generating process itself can satisfy the requirements of procedural fairness. We propose a framework that decouples the objectionable data generating components from the neutral ones by utilizing reference points and the associated value instantiation rule. Our findings highlight the necessity of preventing disguised procedural unfairness, drawing attention not only to the objectionable data generating components that we aim to mitigate, but also more importantly, to the neutral components that we intend to keep unaffected.more » « less
- 
            Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution ShiftsWe consider a federated learning (FL) system consisting of multiple clients and a server, where the clients aim to collaboratively learn a common decision model from their distributed data. Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model. In this work, we leverage the idea of distribution shift mappings in performative prediction to formalize this model-dependent data distribution shift and propose a performative FL framework. We first introduce necessary and sufficient conditions for the existence of a unique performative stable solution and characterize its distance to the performative optimal solution. Then we propose the performative FedAvg algorithm and show that it converges to the performative stable solution at a rate of O(1/T) under both full and partial participation schemes.In particular, we use novel proof techniques and show how the clients' heterogeneity influences the convergence. Numerical results validate our analysis and provide valuable insights into real-world applications.more » « less
- 
            The increasing automation of high-stakes decisions with direct impact on the lives and well-being of individuals raises a number of important considerations. Prominent among these is strategic behavior by individuals hoping to achieve a more desirable outcome. Two forms of such behavior are commonly studied: 1) misreporting of individual attributes, and 2) recourse, or actions that truly change such attributes. The former involves deception, and is inherently undesirable, whereas the latter may well be a desirable goal insofar as it changes true individual qualification. We study misreporting and recourse as strategic choices by individuals within a unified framework. In particular, we propose auditing as a means to incentivize recourse actions over attribute manipulation, and characterize optimal audit policies for two types of principals, utility-maximizing and recourse-maximizing. Additionally, we consider subsidies as an incentive for recourse over manipulation, and show that even a utility-maximizing principal would be willing to devote a considerable amount of audit budget to providing such subsidies. Finally, we consider the problem of optimizing fines for failed audits, and bound the total cost incurred by the population as a result of audits.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available