skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Light in the Dark: Searching for Electromagnetic Counterparts to Black Hole–Black Hole Mergers in LIGO/Virgo O3 with the Zwicky Transient Facility
Abstract The accretion disks of active galactic nuclei (AGNs) are promising locations for the merger of compact objects detected by gravitational wave (GW) observatories. Embedded within a baryon-rich, high-density environment, mergers within AGNs are the only GW channel where an electromagnetic (EM) counterpart must occur (whether detectable or not). Considering AGNs with unusual flaring activity observed by the Zwicky Transient Facility (ZTF), we describe a search for candidate EM counterparts to binary black hole (BBH) mergers detected by LIGO/Virgo in O3. After removing probable false positives, we find nine candidate counterparts to BBH mergers during O3 (seven in O3a, two in O3b) with ap-value of 0.0019. Based on ZTF sky coverage, AGN geometry, and merger geometry, we expect ≈3(NBBH/83)(fAGN/0.5) potentially detectable EM counterparts from O3, whereNBBHis the total number of observed BBH mergers andfAGNis the fraction originating in AGNs. Further modeling of breakout and flaring phenomena in AGN disks is required to reduce our false-positive rate. Two of the events are also associated with mergers with total masses >100M, which is the expected rate for O3 if hierarchical (large-mass) mergers occur in the AGN channel. Candidate EM counterparts in future GW observing runs can be better constrained by coverage of the Southern sky as well as spectral monitoring of unusual AGN flaring events in LIGO/Virgo alert volumes. A future set of reliable AGN EM counterparts to BBH mergers will yield an independent means of measuring cosmic expansion (H0) as a function of redshift.  more » « less
Award ID(s):
2034437 1831412 2219090 2108402 2206096
PAR ID:
10391738
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
942
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 99
Size(s):
Article No. 99
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Advanced LIGO and Advanced Virgo are detecting a large number of binary stellar origin black hole (BH) mergers. A promising channel for accelerated BH merger lies in active galactic nucleus (AGN) discs of gas around supermasssive BHs. Here, we investigate the relative number of compact object (CO) mergers in AGN disc models, including BH, neutron stars (NS), and white dwarfs, via Monte Carlo simulations. We find the number of all merger types in the bulk disc grows ∝ t1/3 which is driven by the Hill sphere of the more massive merger component. Median mass ratios of NS–BH mergers in AGN discs are $$\tilde{q}=0.07\pm 0.06(0.14\pm 0.07)$$ for mass functions (MF) M−1(− 2). If a fraction fAGN of the observed rate of BH–BH mergers (RBH–BH) come from AGN, the rate of NS–BH (NS–NS) mergers in the AGN channel is $${R}_{\mathrm{ BH}\!-\!\mathrm{ NS}} \sim f_{\mathrm{ AGN}}[10,300]\, \rm {Gpc}^{-3}\, \rm {yr}^{-1},({\mathit{ R}}_{NS\!-\!NS} \le \mathit{ f}_{AGN}400\, \rm {Gpc}^{-3}\, \rm {yr}^{-1}$$). Given the ratio of NS–NS/BH–BH LIGO search volumes, from preliminary O3 results the AGN channel is not the dominant contribution to observed NS–NS mergers. The number of lower mass gap events expected is a strong function of the nuclear MF and mass segregation efficiency. CO merger ratios derived from LIGO can restrict models of MF, mass segregation, and populations embedded in AGN discs. The expected number of electromagnetic (EM) counterparts to NS–BH mergers in AGN discs at z < 1 is $$\sim [30,900]\, {\rm {yr}}^{-1}(f_{\mathrm{ AGN}}/0.1)$$. EM searches for flaring events in large AGN surveys will complement LIGO constraints on AGN models and the embedded populations that must live in them. 
    more » « less
  2. ABSTRACT Merging black holes (BHs) are expected to produce remnants with large dimensionless spin parameters (aspin ∼ 0.7). However, gravitational wave (GW) observations with LIGO–Virgo–Kagra (LVK) suggest that merging BHs are consistent with modestly positive but not high spin (aspin ∼ 0.2), causing tension with models suggesting that high-mass mergers are produced by hierarchical merger channels. Some BHs also show evidence for strong in-plane spin components. Here, we point out that spin-down of BHs due to eccentric prograde post-merger orbits within the gas of an active galactic nucleus (AGN) disc can yield BHs with masses in the upper mass gap, but only modestly positive aspin, and thus observations of BHs with low spin do not rule out hierarchical models. We also point out that the fraction of binary black hole (BBH) mergers with significant in-plane spin components is a strong test of interactions between disc BBHs and nuclear spheroid orbiters. Spin magnitude and spin tilt constraints from LVK observations of BBHs are an excellent test of dynamics of BHs in AGN discs, disc properties, and the nuclear clusters interacting with AGNs. 
    more » « less
  3. Abstract The disks of active galactic nuclei (AGNs) may be important sites of binary black hole (BBH) mergers. Here we show via numerical experiments with the high-accuracy, high-precision code SpaceHub that broken symmetry in dynamical encounters in AGN disks can lead to asymmetry between prograde and retrograde BBH mergers. The direction of the hardening asymmetry depends on the initial binary semimajor axis. Under the assumption that the spin of the BHs becomes aligned with the angular momentum of the disk on a short timescale compared with the encounter timescale, an asymmetric distribution of mass-weighted projected spin χ eff is predicted in LIGO–Virgo detections of BBH mergers from AGN disks. In particular, this model predicts that positive χ eff BBH mergers are most likely for encounters with massive tertiaries in migration traps at radial distances ≳500–600 gravitational radii. 
    more » « less
  4. ABSTRACT Galactic nuclei are promising sites for stellar origin black hole (BH) mergers, as part of merger hierarchies in deep potential wells. We show that binary black hole (BBH) merger rates in active galactic nuclei (AGNs) should always exceed merger rates in quiescent galactic nuclei (nuclear star clusters, NSCs) around supermassive black holes (SMBHs) without accretion discs. This is primarily due to average binary lifetimes in AGNs that are significantly shorter than those in NSCs. The lifetime difference comes from rapid hardening of BBHs in AGNs, such that their semimajor axes are smaller than the hard–soft boundary of their parent NSC; this contrasts with the large average lifetime to merger for BBHs in NSCs around SMBHs, due to binary ionization mechanisms. Secondarily, merger rates in AGNs are enhanced by gas-driven binary formation mechanisms. Formation of new BHs in AGN discs is a minor contributor to the rate differences. With the gravitational wave detection of several BBHs with at least one progenitor in the upper mass gap, and signatures of dynamical formation channels in the χeff distribution, we argue that AGNs could contribute $$\sim 25{\!-\!}80{{\ \rm per\ cent}}$$ of the LIGO–Virgo measured rate of $$\sim 24\, \rm {Gpc}^{-3} \rm {yr}^{-1}$$. 
    more » « less
  5. ABSTRACT Using grid-based hydrodynamics simulations and analytic modeling, we compute the electromagnetic (EM) signatures of gravitational wave (GW) driven inspirals of massive black hole binaries that accrete gas from circumbinary discs, exploring the effects of varying gas temperatures, viscosity laws, and binary mass ratios. Our main finding is that active galactic nuclei (AGNs) that host inspiraling binaries can exhibit two sub-types of long-term secular variability patterns: Type-A events which dim before merger and brighten afterward, and Type-B events which brighten before merger and dim afterward. In both types, the merger coincides with a long-lasting chromatic change of the AGN appearance. The sub-types correspond to the direction of angular momentum transfer between the binary and the disc, and could thus have correlated GW signatures if the gas-induced torque can be inferred from GW phase drift measurements by LISA. The long-term brightness trends are caused by steady weakening of the disc-binary torque that accompanies orbital decay, it induces a hysteresis effect whereby the disc ‘remembers’ the history of the binary’s contraction. We illustrate the effect using a reduced model problem of an axisymmetric thin disc subjected at its inner edge to the weakening torque of an inspiraling binary. The model problem yields a new class of self-similar disc solutions, which capture salient features of the multidimensional hydrodynamics simulations. We use these solutions to derive variable AGN disc emission signatures within years to decades of massive black hole binary mergers in AGNs. Spectral changes of Mrk 1018 might have been triggered by an inspiral-merger event. 
    more » « less