skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraints on the Hosts of UHECR Accelerators
Abstract Interactions of ultra-high-energy cosmic rays (UHECRs) in the surroundings of their accelerators can naturally explain the observed spectrum and composition of UHECRs, including the abundance of protons below the ankle. Here we show that astrophysical properties of the UHECR source environment such as the temperature, size, and magnetic field can be constrained by UHECR and neutrino data. Applying this to candidate sources with a simple structure shows that starburst galaxies are consistent with these constraints, but galaxy clusters are in tension with them. For multicomponent systems like active galactic nuclei and gamma-ray bursts, the results are indicative, but a customized analysis is needed for definitive conclusions.  more » « less
Award ID(s):
2138121 2013199
PAR ID:
10391759
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
942
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L39
Size(s):
Article No. L39
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Very high energy (VHE) γ-rays ($$\gtrsim\!\! 0.1\rm ~TeV$$) and neutrinos are crucial for identifying accelerators of ultra-high-energy cosmic rays (UHECRs), but this is challenging especially for UHECR nuclei. In this work, we develop a numerical code to solve the transport equation for UHECRs and their secondaries, where both nuclear and electromagnetic cascades are taken into account self-consistently, considering steady UHECR accelerators such as radio galaxies. In particular, we focus on Centaurus A, which has been proposed as one of the most promising UHECR sources in the local Universe. Motivated by observations of extended VHE γ-ray emission from its kiloparsec-scale jet by the High Energy Stereoscopic System (H.E.S.S.), we study interactions between UHECRs accelerated in the large-scale jet and various target photon fields including blazar-like beamed core emission, and present a quantitative study on VHE γ-ray signatures of UHECR nuclei, including the photodisintegration and Bethe–Heitler pair production processes. We show that VHE γ-rays from UHECR nuclei could be detected by the ground-based γ-ray telescopes given that the dominant composition of UHECRs consists of intermediate-mass (such as oxygen) nuclei. 
    more » « less
  2. Abstract For several decades, the origin of ultra-high-energy cosmic rays (UHECRs) has been an unsolved question of high-energy astrophysics. One approach for solving this puzzle is to correlate UHECRs with high-energy neutrinos, since neutrinos are a direct probe of hadronic interactions of cosmic rays and are not deflected by magnetic fields. In this paper, we present three different approaches for correlating the arrival directions of neutrinos with the arrival directions of UHECRs. The neutrino data are provided by the IceCube Neutrino Observatory and ANTARES, while the UHECR data with energies above ∼50 EeV are provided by the Pierre Auger Observatory and the Telescope Array. All experiments provide increased statistics and improved reconstructions with respect to our previous results reported in 2015. The first analysis uses a high-statistics neutrino sample optimized for point-source searches to search for excesses of neutrino clustering in the vicinity of UHECR directions. The second analysis searches for an excess of UHECRs in the direction of the highest-energy neutrinos. The third analysis searches for an excess of pairs of UHECRs and highest-energy neutrinos on different angular scales. None of the analyses have found a significant excess, and previously reported overfluctuations are reduced in significance. Based on these results, we further constrain the neutrino flux spatially correlated with UHECRs. 
    more » « less
  3. Abstract We calculate the arrival direction distribution of ultrahigh-energy cosmic rays (UHECRs) with a new suite of models of the Galactic magnetic field (GMF), assuming sources follow the large-scale structure of the Universe. Compared to previous GMF models, the amplitude of the dipole component of the UHECR arrival flux is significantly reduced. We find that the reduction is due to the accidentally coinciding position of the peak of the extragalactic UHECR flux and the boundary of strong flux demagnification due to the GMF toward the central region of the Galaxy. This serendipitous sensitivity of UHECR anisotropies to the GMF model will be a powerful probe of the source distribution as well as Galactic and extragalactic magnetic fields. Demagnification by the GMF also impacts the visibility of some popular source candidates. 
    more » « less
  4. We report on several new results using anisotropies of UHECRs. We improve and extend the work of Ding, Globus and Farrar, who modeled the UHECR dipole assuming sources follow the dark matter distribution, accounting for deflections in the Galactic and extragalactic magnetic fields but using a simplified treatment of interactions during propagation. The work presented here employs an accurate and self-consistent treatment of the evolution of composition during propagation, allows for and explores the impact of “bias” in the relation between UHECR sources and the dark matter distribution, and investigates the possible generation of arrival-direction-dependent composition anisotropies. Limits on the source number density consistent with the observed anisotropies are derived for the case where UHECR sources follow the dark matter distribution, and compared to a homogeneous source distribution case. 
    more » « less
  5. Abstract We revisit ultrahigh-energy cosmic-ray (UHECR) production in tidal disruption events (TDEs) in light of recent evidence of neutrino-TDE associations. We use an isotropically emitting source-propagation model, which has been developed to describe the neutrino production in AT2019dsg, AT2019fdr, and AT2019aalc. These TDEs have strong dust echoes in the infrared (IR) range, which are potentially linked to the neutrino production. A mechanism where neutrinos originate from cosmic-ray (CR) scattering on IR photons implies CRs in the ultrahigh-energy range, thus suggesting a natural connection with the observed UHECR. We extrapolate the three TDE associations to a population of neutrino- and UHECR-emitting TDEs, and postulate that these TDEs power the UHECRs. We then infer the source composition, population parameters, and local rates that are needed to describe UHECR data. We find that UHECR data point toward a mix of light to mid-heavy injection isotopes, which could be found, e.g., in oxygen-neon-magnesium white dwarfs, and to a contribution of at least two groups of TDEs with different characteristics, dominated by AT2019aalc-type events. The required local TDE rates of O ( 1 0 2 ) Gpc 3 yr 1 , however, are more indicative of the disruption of main-sequence stars. We propose an enhanced efficiency in the acceleration of heavier nuclei that could address this discrepancy. The predicted diffuse neutrino fluxes suggest a population of astrophysical neutrino sources that can be observed by future radio neutrino detection experiments. The derived source parameters are consistent with those expected from the individual neutrino observations. 
    more » « less