skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Artificial intelligence for automated detection of large mammals creates path to upscale drone surveys
Abstract Imagery from drones is becoming common in wildlife research and management, but processing data efficiently remains a challenge. We developed a methodology for training a convolutional neural network model on large-scale mosaic imagery to detect and count caribou (Rangifer tarandus), compare model performance with an experienced observer and a group of naïve observers, and discuss the use of aerial imagery and automated methods for large mammal surveys. Combining images taken at 75 m and 120 m above ground level, a faster region-based convolutional neural network (Faster-RCNN) model was trained in using annotated imagery with the labels: “adult caribou”, “calf caribou”, and “ghost caribou” (animals moving between images, producing blurring individuals during the photogrammetry processing). Accuracy, precision, and recall of the model were 80%, 90%, and 88%, respectively. Detections between the model and experienced observer were highly correlated (Pearson: 0.96–0.99,Pvalue < 0.05). The model was generally more effective in detecting adults, calves, and ghosts than naïve observers at both altitudes. We also discuss the need to improve consistency of observers’ annotations if manual review will be used to train models accurately. Generalization of automated methods for large mammal detections will be necessary for large-scale studies with diverse platforms, airspace restrictions, and sensor capabilities.  more » « less
Award ID(s):
1920011
PAR ID:
10391778
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pack-ice seals are key indicator species in the Southern Ocean. Their large size (2–4 m) and continent-wide distribution make them ideal candidates for monitoring programs via very-high-resolution satellite imagery. The sheer volume of imagery required, however, hampers our ability to rely on manual annotation alone. Here, we present SealNet 2.0, a fully automated approach to seal detection that couples a sea ice segmentation model to find potential seal habitats with an ensemble of semantic segmentation convolutional neural network models for seal detection. Our best ensemble attains 0.806 precision and 0.640 recall on an out-of-sample test dataset, surpassing two trained human observers. Built upon the original SealNet, it outperforms its predecessor by using annotation datasets focused on sea ice only, a comprehensive hyperparameter study leveraging substantial high-performance computing resources, and post-processing through regression head outputs and segmentation head logits at predicted seal locations. Even with a simplified version of our ensemble model, using AI predictions as a guide dramatically boosted the precision and recall of two human experts, showing potential as a training device for novice seal annotators. Like human observers, the performance of our automated approach deteriorates with terrain ruggedness, highlighting the need for statistical treatment to draw global population estimates from AI output. 
    more » « less
  2. A large variety of sound sources in the ocean, including biological, geophysical, and man-made, can be simultaneously monitored over instantaneous continental-shelf scale regions via the passive ocean acoustic waveguide remote sensing (POAWRS) technique by employing a large-aperture densely-populated coherent hydrophone array system. Millions of acoustic signals received on the POAWRS system per day can make it challenging to identify individual sound sources. An automated classification system is necessary to enable sound sources to be recognized. Here, the objectives are to (i) gather a large training and test data set of fin whale vocalization and other acoustic signal detections; (ii) build multiple fin whale vocalization classifiers, including a logistic regression, support vector machine (SVM), decision tree, convolutional neural network (CNN), and long short-term memory (LSTM) network; (iii) evaluate and compare performance of these classifiers using multiple metrics including accuracy, precision, recall and F1-score; and (iv) integrate one of the classifiers into the existing POAWRS array and signal processing software. The findings presented here will (1) provide an automatic classifier for near real-time fin whale vocalization detection and recognition, useful in marine mammal monitoring applications; and (2) lay the foundation for building an automatic classifier applied for near real-time detection and recognition of a wide variety of biological, geophysical, and man-made sound sources typically detected by the POAWRS system in the ocean. 
    more » « less
  3. We present an active learning pipeline to identify hurricane impacts on coastal landscapes. Previously unlabeled post-storm images are used in a three component workflow — first an online interface is used to crowd-source labels for imagery; second, a convolutional neural network is trained using the labeled images; third, model predictions are displayed on an interactive map. Both the labeler and interactive map allow coastal scientists to provide additional labels that will be used to develop a large labeled dataset, a refined model, and improved hurricane impact assessments. 
    more » « less
  4. Archaeological surveys conducted through the inspection of high-resolution satellite imagery promise to transform how archaeologists conduct large-scale regional and supra-regional research. However, conducting manual surveys of satellite imagery is labour- and time-intensive, and low target prevalence substantially increases the likelihood of miss-errors (false negatives). In this article, the authors compare the results of an imagery survey conducted using artificial intelligence computer vision techniques (Convolutional Neural Networks) to a survey conducted manually by a team of experts through the Geo-PACHA platform (for further details of the project, see Wernkeet al. 2023). Results suggest that future surveys may benefit from a hybrid approach—combining manual and automated methods—to conduct an AI-assisted survey and improve data completeness and robustness. 
    more » « less
  5. Abstract Automated manufacturing feature recognition is a crucial link between computer-aided design and manufacturing, facilitating process selection and other downstream tasks in computer-aided process planning. While various methods such as graph-based, rule-based, and neural networks have been proposed for automatic feature recognition, they suffer from poor scalability or computational inefficiency. Recently, voxel-based convolutional neural networks have shown promise in solving these challenges but incur a tradeoff between computational cost and feature resolution. This paper investigates a computationally efficient sparse voxel-based convolutional neural network for manufacturing feature recognition, specifically, an octree-based sparse voxel convolutional neural network. This model is trained on a large-scale manufacturing feature dataset, and its performance is compared to a voxel-based feature recognition model (FeatureNet). The results indicate that the octree-based model yields higher feature recognition accuracy (99.5% on the test dataset) with 44% lower graphics processing unit (GPU) memory consumption than a voxel-based model of comparable resolution. In addition, increasing the resolution of the octree-based model enables recognition of finer manufacturing features. These results indicate that a sparse voxel-based convolutional neural network is a computationally efficient deep learning model for manufacturing feature recognition to enable process planning automation. Moreover, the sparse voxel-based neural network demonstrated comparable performance to a boundary representation-based feature recognition neural network, achieving similar accuracy in single-feature recognition without having access to the exact 3D shape descriptors. 
    more » « less