skip to main content


Title: Effect of Estuary Urbanization on Tidal Dynamics and High Tide Flooding in a Coastal Lagoon
Abstract

High tide floods (HTFs) are minor, shallow flooding events whose frequency has increased due to relative sea‐level rise (SLR) and secular changes in tides. Here we isolate and examine the role of historical landscape change (geomorphology, land cover) and SLR on tides and HTF frequency in an urbanized lagoonal estuary: Jamaica Bay, New York. The approach involves data archeology, historical (1870s) map digitization, as well as numerical modeling of the bay. Numerical simulations indicate that a century of landscape alterations (e.g., inlet deepening and widening, channel deepening, and wetland reclamation) increased the mean tidal range at the head of the bay by about 20%. The observed historical shift from the attenuation to amplification of semidiurnal tides is primarily associated with reduced tidal damping at the inlet and increased tidal reflection. The 18% decrease in surface area exerts a minor influence. A 1‐year (2020) water level simulation is used to evaluate the effects of both SLR and altered morphology on the annual number of HTFs. Results show that of 15 “minor flood” events in 2020, only one would have occurred without SLR and two without landscape changes since the 1870s. Spectral and transfer function analyses of water level reveal frequency‐dependent fingerprints of landscape change, with a significant decrease in damping for high‐frequency surges and tides (6–18 hr time scale). By contrast, SLR produced only minor effects on frequency‐dependent amplification. Nonetheless, the geomorphic influence on the dynamical response significantly increases the vulnerability of the system to SLR, particularly high‐tide flooding.

 
more » « less
Award ID(s):
1855037 2013280
NSF-PAR ID:
10391811
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
128
Issue:
1
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. In recent centuries, human activities have greatly modified thegeomorphology of coastal regions. However, studies of historical andpossible future changes in coastal flood extremes typically ignore theinfluence of geomorphic change. Here, we quantify the influence of 20th-century man-made changes to Jamaica Bay, New York City, on present-day storm tides. We develop and validate a hydrodynamic model for the 1870s based on detailed maps of bathymetry, seabed characteristics, topography, and tide observations for use alongside a present-day model. Predominantly through dredging, landfill, and inlet stabilization, the average water depth of the bay increased from 1.7 to 4.5 m, tidal surface area decreased from 92 to 72 km2, and the inlet minimum cross-sectional area expanded from 4800 to 8900 m2. Total (freshwater plus salt) marsh habitat area has declined from 61 to 15 km2 and intertidal unvegetated habitat area from 17 to 4.6 km2. A probabilistic flood hazard assessment with simulations of 144 storm events reveals that the landscape changes caused an increase of 0.28 m (12 %) in the 100-year storm tide, even larger than the influence of global sea level rise of about 0.23 m since the 1870s. Specific anthropogenic changes to estuary depth and area as well as inlet depth and width are shown through targeted modeling and dynamics-based considerations to be the most important drivers of increasing storm tides. 
    more » « less
  2. Abstract

    Little is known about the effect of tidal changes on minor flooding in most lagoonal estuaries, often due to a paucity of historical records that predate landscape changes. In this contribution, we recover and apply archival tidal range data to show that the mean tidal range in Miami, Florida, has almost doubled since 1900, from 0.32 to 0.61 m today. A likely cause is the dredging of a ∼15 m deep, 150 m wide harbor entrance channel beginning in the early 20th century, which changed northern Biscayne Bay from a choked inlet system to one with a tidal range close to coastal conditions. To investigate the implications for high‐tide flooding, we develop and validate a tidal‐inference based methodology that leverages estimates of pre‐1900 tidal range to obtain historical tidal predictions and constituents. Next, water level predictions that represent historical and modern water level variations are projected forward in time using different sea level rise scenarios. Results show that the historical increase in tidal range hastened the occurrence of present‐day flooding, and that the total integrated number of days with high‐tide floods in the 2020–2100 period will be approximately O(103) more under present day tides compared to pre‐development conditions. These results suggest that tidal change may be a previously under‐appreciated factor in the increasing prevalence of high‐tide flooding in lagoonal estuaries, and our methods open the door to improving our understanding of other heavily‐altered systems.

     
    more » « less
  3. null (Ed.)
    Nuisance flooding (NF) is defined as minor, nondestructive flooding that causes substantial, accumulating socioeconomic impacts to coastal communities. While sea-level rise is the main driver for the observed increase in NF events in the United States, we show here that secular changes in tides also contribute. An analysis of 40 tidal gauge records from U.S. coasts finds that, at 18 locations, NF increased due to tidal amplification, while decreases in tidal range suppressed NF at 11 locations. Estuaries show the largest changes in NF attributable to tide changes, and these can often be traced to anthropogenic alterations. Limited long-term measurements from estuaries suggest that the effects of evolving tides are more widespread than the locations considered here. The total number of NF days caused by tidal changes has increased at an exponential rate since 1950, adding ~27% to the total number of NF events observed in 2019 across locations with tidal amplification. 
    more » « less
  4. Abstract

    This study investigates the sensitivity of the Calcasieu Lake estuarine region to channel deepening in southwest Louisiana in the USA. We test the hypothesis that the depth increase in a navigational channel in an estuarine region results in the amplification of the inland penetration of storm surge, thereby increasing the flood vulnerability of the region. We run numerical experiments using the Delft3D modeling suite (validated with observational data) with different historic channel depth scenarios. Model results show that channel deepening facilitates increased water movement into the lake–estuary system during a storm surge event. The inland peak water level increases by 37% in the presence of the deepest channel. Moreover, the peak volumetric flow rate increases by 291.6% along the navigational channel. Furthermore, the tidal prism and the volume of surge prism passing through the channel inlet increase by 487% and 153.3%, respectively. In our study, the presence of the deepest channel results in extra 56.72 km2of flooded area (approximately 12% increase) which is an indication that channel deepening over the years has rendered the region more vulnerable to hurricane-induced flooding. The study also analyzes the impact of channel deepening on storm surge in estuaries under different future sea-level rise (SLR) scenarios. Simulations suggest that even the most conservative scenario of SLR will cause an approximately 51% increase in flooded area in the presence of the deepest ship channel, thereby suggesting that rising sea level will cause increased surge penetration and increased flood risk.

     
    more » « less
  5. Abstract

    Since the late nineteenth century, channel depths have more than doubled in parts of New York Harbor and the tidal Hudson River, wetlands have been reclaimed and navigational channels widened, and river flow has been regulated. To quantify the effects of these modifications, observations and numerical simulations using historical and modern bathymetry are used to analyze changes in the barotropic dynamics. Model results and water level records for Albany (1868 to present) and New York Harbor (1844 to present) recovered from archives show that the tidal amplitude has more than doubled near the head of tides, whereas increases in the lower estuary have been slight (<10%). Channel deepening has reduced the effective drag in the upper tidal river, shifting the system from hyposynchronous (tide decaying landward) to hypersynchronous (tide amplifying). Similarly, modeling shows that coastal storm effects propagate farther landward, with a 20% increase in amplitude for a major event. In contrast, the decrease in friction with channel deepening has lowered the tidally averaged water level during discharge events, more than compensating for increased surge amplitude. Combined with river regulation that reduced peak discharges, the overall risk of extreme water levels in the upper tidal river decreased after channel construction, reducing the water level for the 10‐year recurrence interval event by almost 3 m. Mean water level decreased sharply with channel modifications around 1930, and subsequent decadal variability has depended both on river discharge and sea level rise. Channel construction has only slightly altered tidal and storm surge amplitudes in the lower estuary.

     
    more » « less