Abstract The brain is organized into intrinsically connected functional networks that can be reliably identified during resting-state functional magnetic resonance imaging (fMRI). Healthy aging is marked by decreased network segregation, which is linked to worse cognitive functioning, but aging-related changes in emotion are less well characterized. Valence bias, which represents the tendency to interpret emotionally ambiguous information as positive or negative, is more positive in older than younger adults and is associated with differences in task-based fMRI activation in the amygdala, prefrontal cortex, and a cingulo-opercular (CO) network. Here, we examined valence bias, age, and resting-state network segregation of 12 brain networks in a sample of 221 healthy individuals from 6 to 80 years old. Resting-state network segregation decreased linearly with increasing age, extending prior reports of de-differentiation across the lifespan. Critically, a more positive valence bias was related to lower segregation of the default mode network (DMN), due to stronger functional connectivity of the DMN with CO and, to a lesser extent, the ventral attention network (VAN) in all participants. In contrast to this overall segregation effect, in participants over 39 years old (who tend to show a positive valence bias), bias was also related to weaker connectivity between the DMN and Reward networks. The present findings indicate that specific interactions between the DMN, a task control network (CO), an emotion processing network (Reward), and, to a weaker extent, an attention network (VAN), support a more positive valence bias, perhaps through regulatory control of self-referential processing and reduced emotional reactivity in aging. The current work offers further insight into the functional brain network alterations that may contribute to affective well-being and dysfunction across the lifespan. 
                        more » 
                        « less   
                    
                            
                            Network organization of resting-state cerebral hemodynamics and their aliasing contributions measured by functional near-infrared spectroscopy
                        
                    
    
            Abstract Objective. Spontaneous fluctuations of cerebral hemodynamics measured by functional magnetic resonance imaging (fMRI) are widely used to study the network organization of the brain. The temporal correlations among the ultra-slow, <0.1 Hz fluctuations across the brain regions are interpreted as functional connectivity maps and used for diagnostics of neurological disorders. However, despite the interest narrowed in the ultra-slow fluctuations, hemodynamic activity that exists beyond the ultra-slow frequency range could contribute to the functional connectivity, which remains unclear.Approach. In the present study, we have measured the brain-wide hemodynamics in the human participants with functional near-infrared spectroscopy (fNIRS) in a whole-head, cap-based and high-density montage at a sampling rate of 6.25 Hz. In addition, we have acquired resting state fMRI scans in the same group of participants for cross-modal evaluation of the connectivity maps. Then fNIRS data were deliberately down-sampled to a typical fMRI sampling rate of ∼0.5 Hz and the resulted differential connectivity maps were subject to a k-means clustering.Main results. Our diffuse optical topographical analysis of fNIRS data have revealed a default mode network (DMN) in the spontaneous deoxygenated and oxygenated hemoglobin changes, which remarkably resemble the same fMRI network derived from participants. Moreover, we have shown that the aliased activities in the down-sampled optical signals have altered the connectivity patterns, resulting in a network organization of aliased functional connectivity in the cerebral hemodynamics.Significance.The results have for the first time demonstrated that fNIRS as a broadly accessible modality can image the resting-state functional connectivity in the posterior midline, prefrontal and parietal structures of the DMN in the human brain, in a consistent pattern with fMRI. Further empowered by the fast sampling rate of fNIRS, our findings suggest the presence of aliased connectivity in the current understanding of the human brain organization. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2132182
- PAR ID:
- 10391819
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Neural Engineering
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 1741-2560
- Page Range / eLocation ID:
- Article No. 016012
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Despite extensive efforts to identify interhemispheric functional connectivity (FC) with resting-state (rs-) fMRI, correlated low-frequency rs-fMRI signal fluctuation across homotopic cortices originates from multiple sources. It remains challenging to differentiate circuit-specific FC from global regulation. Here, we developed a bilateral line-scanning fMRI method to detect laminar-specific rs-fMRI signals from homologous forepaw somatosensory cortices with high spatial and temporal resolution in rat brains. Based on spectral coherence analysis, two distinct bilateral fluctuation spectral features were identified: ultra-slow fluctuation (<0.04 Hz) across all cortical laminae versus Layer (L) 2/3-specific evoked BOLD at 0.05 Hz based on 4 s on/16 s off block design and resting-state fluctuations at 0.08–0.1 Hz. Based on the measurements of evoked BOLD signal at corpus callosum (CC), this L2/3-specific 0.05 Hz signal is likely associated with neuronal circuit-specific activity driven by the callosal projection, which dampened ultra-slow oscillation less than 0.04 Hz. Also, the rs-fMRI power variability clustering analysis showed that the appearance of L2/3-specific 0.08–0.1 Hz signal fluctuation is independent of the ultra-slow oscillation across different trials. Thus, distinct laminar-specific bilateral FC patterns at different frequency ranges can be identified by the bilateral line-scanning fMRI method.more » « less
- 
            Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized. Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects. Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity. Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics.more » « less
- 
            Abstract Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includesn‐back task‐based and resting‐state fMRI data from adults aged 22–35 years (taskn = 896; restn = 898). We applied connectome‐based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10‐fold cross‐validation predicted self‐reported average sleep duration for the past month fromn‐back task and resting‐state connectivity patterns. We replicated this finding in data from the 2‐year follow‐up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includesn‐back task and resting‐state fMRI for adolescents aged 11–12 years (taskn = 786; restn = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10‐fold cross‐validation again predicted sleep duration fromn‐back task and resting‐state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting‐state functional brain connectivity patterns reflect sleep duration in youth and young adults.more » « less
- 
            Abstract There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. Brain connectivity of different modalities provides insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multi-modal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multi-objective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multi-modal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared to the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
