skip to main content


Title: The MSPSRπ catalogue: VLBA astrometry of 18 millisecond pulsars
ABSTRACT

With unparalleled rotational stability, millisecond pulsars (MSPs) serve as ideal laboratories for numerous astrophysical studies, many of which require precise knowledge of the distance and/or velocity of the MSP. Here, we present the astrometric results for 18 MSPs of the ‘MSPSR$\pi$’ project focusing exclusively on astrometry of MSPs, which includes the re-analysis of three previously published sources. On top of a standardized data reduction protocol, more complex strategies (i.e. normal and inverse-referenced 1D interpolation) were employed where possible to further improve astrometric precision. We derived astrometric parameters using sterne, a new Bayesian astrometry inference package that allows the incorporation of prior information based on pulsar timing where applicable. We measured significant (${>}3\, \sigma$) parallax-based distances for 15 MSPs, including 0.81 ± 0.02 kpc for PSR J1518+4904 – the most significant model-independent distance ever measured for a double neutron star system. For each MSP with a well-constrained distance, we estimated its transverse space velocity and radial acceleration. Among the estimated radial accelerations, the updated ones of PSR J1012+5307 and PSR J1738+0333 impose new constraints on dipole gravitational radiation and the time derivative of Newton’s gravitational constant. Additionally, significant angular broadening was detected for PSR J1643−1224, which offers an independent check of the postulated association between the HII region Sh 2-27 and the main scattering screen of PSR J1643−1224. Finally, the upper limit of the death line of γ-ray-emitting pulsars is refined with the new radial acceleration of the hitherto least energetic γ-ray pulsar PSR J1730−2304.

 
more » « less
Award ID(s):
2020265
NSF-PAR ID:
10391828
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
519
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4982-5007
Size(s):
["p. 4982-5007"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present timing solutions for 12 pulsars discovered in the Green Bank North Celestial Cap 350 MHz pulsar survey, including six millisecond pulsars (MSPs), a double neutron star (DNS) system, and a pulsar orbiting a massive white dwarf companion. Timing solutions presented here include 350 and 820 MHz Green Bank Telescope data from initial confirmation and follow-up, as well as a dedicated timing campaign spanning 1 ryr PSR J1122−3546 is an isolated MSP, PSRs J1221−0633 and J1317−0157 are MSPs in black widow systems and regularly exhibit eclipses, and PSRs J2022+2534 and J2039−3616 are MSPs that can be timed with high precision and have been included in pulsar timing array experiments seeking to detect low-frequency gravitational waves. PSRs J1221−0633 and J2039−3616 have Fermi Large Area Telescope gamma-ray counterparts and also exhibit significant gamma-ray pulsations. We measure proper motions for three of the MSPs in this sample and estimate their space velocities, which are typical compared to those of other MSPs. We have detected the advance of periastron for PSR J1018−1523 and therefore measure the total mass of the DNS system,mtot= 2.3 ± 0.3M. Long-term pulsar timing with data spanning more than 1 yr is critical for classifying recycled pulsars, carrying out detailed astrometry studies, and shedding light on the wealth of information in these systems post-discovery.

     
    more » « less
  2. Abstract We present new discoveries and results from long-term timing of 72 pulsars discovered in the Pulsar Arecibo L -band Feed Array (PALFA) survey, including precise determination of astrometric and spin parameters, and flux density and scatter broadening measurements at 1.4 GHz. Notable discoveries include two young pulsars (characteristic ages ∼30 kyr) with no apparent supernova remnant associations, three mode-changing, 12 nulling and two intermittent pulsars. We detected eight glitches in five pulsars. Among them is PSR J1939+2609, an apparently old pulsar (characteristic age ∼1 Gy), and PSR J1954+2529, which likely belongs to a newly emerging class of binary pulsars. The latter is the only pulsar among the 72 that is clearly not isolated: a nonrecycled neutron star with a 931 ms spin period in an eccentric ( e = 0.114) wide ( P b = 82.7 days) orbit with a companion of undetermined nature having a minimum mass of ∼0.6 M ⊙ . Since operations at Arecibo ceased in 2020 August, we give a final tally of PALFA sky coverage, and compare its 207 pulsar discoveries to the known population. On average, they are 50% more distant than other Galactic plane radio pulsars; PALFA millisecond pulsars (MSPs) have twice the dispersion measure per unit spin period than the known population of MSP in the plane. The four intermittent pulsars discovered by PALFA more than double the population of such objects, which should help to improve our understanding of pulsar magnetosphere physics. The statistics for these, rotating radio transients, and nulling pulsars suggest that there are many more of these objects in the Galaxy than was previously thought. 
    more » « less
  3. ABSTRACT

    More than 100 millisecond pulsars (MSPs) have been discovered in radio observations of gamma-ray sources detected by the Fermi Large Area Telescope (LAT), but hundreds of pulsar-like sources remain unidentified. Here, we present the first results from the targeted survey of Fermi-LAT sources being performed by the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed 79 sources identified as possible gamma-ray pulsar candidates by a Random Forest classification of unassociated sources from the 4FGL catalogue. Each source was observed for 10 min on two separate epochs using MeerKAT’s L-band receiver (856–1712 MHz), with typical pulsed flux density sensitivities of $\sim 100\, \mu$Jy. Nine new MSPs were discovered, eight of which are in binary systems, including two eclipsing redbacks and one system, PSR J1526−2744, that appears to have a white dwarf companion in an unusually compact 5 h orbit. We obtained phase-connected timing solutions for two of these MSPs, enabling the detection of gamma-ray pulsations in the Fermi-LAT data. A follow-up search for continuous gravitational waves from PSR J1526−2744 in Advanced LIGO data using the resulting Fermi-LAT timing ephemeris yielded no detection, but sets an upper limit on the neutron star ellipticity of 2.45 × 10−8. We also detected X-ray emission from the redback PSR J1803−6707 in data from the first eROSITA all-sky survey, likely due to emission from an intrabinary shock.

     
    more » « less
  4. ABSTRACT We report observed and derived timing parameters for three millisecond pulsars (MSPs) from observations collected with the Parkes 64-m telescope, Murriyang. The pulsars were found during reprocessing of archival survey data by Mickaliger et al. One of the new pulsars (PSR J1546–5925) has a spin period P = 7.8 ms and is isolated. The other two (PSR J0921–5202 with P = 9.7 ms and PSR J1146–6610 with P = 3.7 ms) are in binary systems around low-mass (${\gt}0.2\, {\rm M}_{\odot }$) companions. Their respective orbital periods are 38.2 and 62.8 d. While PSR J0921–5202 has a low orbital eccentricity e = 1.3 × 10−5, in keeping with many other Galactic MSPs, PSR J1146–6610 has a significantly larger eccentricity, e = 7.4 × 10−3. This makes it a likely member of a group of eccentric MSP–helium white dwarf binary systems in the Galactic disc whose formation is poorly understood. Two of the pulsars are co-located with previously unidentified point sources discovered with the Fermi satellite’s Large Area Telescope, but no γ-ray pulsations have been detected, likely due to their low spin-down powers. We also show that, particularly in terms of orbital diversity, the current sample of MSPs is far from complete and is subject to a number of selection biases. 
    more » « less
  5. Abstract

    We present the discovery and timing solutions of four millisecond pulsars (MSPs) discovered in the Arecibo 327 MHz Drift-Scan Pulsar Survey. Three of these pulsars are in binary systems, consisting of a redback (PSR J2055+1545), a black widow (PSR J1630+3550), and a neutron star–white dwarf binary (PSR J2116+1345). The fourth MSP, PSR J2212+2450, is isolated. We present the multiyear timing solutions as well as polarization properties across a range of radio frequencies for each pulsar. We perform a multiwavelength search for emission from these systems and find an optical counterpart for PSR J2055+1545 in Gaia DR3, as well as a gamma-ray counterpart for PSR J2116+1345 with the Fermi-LAT telescope. Despite the close colocation of PSR J2055+1545 with a Fermi source, we are unable to detect gamma-ray pulsations, likely due to the large orbital variability of the system. This work presents the first two binaries found by this survey with orbital periods shorter than a day; we expect to find more in the 40% of the survey data that have yet to be searched.

     
    more » « less