Automated Driving Systems (ADS), like many other systems people use today, depend on successful Artificial Intelligence (AI) for safe roadway operations. In ADS, an essential function completed by AI is the computer vision techniques for detecting roadway signs by vehicles. The AI, though, is not always reliable and sometimes requires the human’s intelligence to complete a task. For the human to collaborate with the AI, it is critical to understand the human’s perception of AI. In the present study, we investigated how human drivers perceive the AI’s capabilities in a driving context where a stop sign is compromised and how knowledge, experience, and trust related to AI play a role. We found that participants with more knowledge of AI tended to trust AI more, and those who reported more experience with AI had a greater understanding of AI. Participants correctly deduced that a maliciously manipulated stop sign would be more difficult for AI to identify. Nevertheless, participants still overestimated the AI’s ability to recognize the malicious stop sign. Our findings suggest that the public do not yet have a sufficiently accurate understanding of specific AI systems, which leads them to over-trust the AI in certain conditions.
Billions of dollars are being invested into developing medical artificial intelligence (AI) systems and yet public opinion of AI in the medical field seems to be mixed. Although high expectations for the future of medical AI do exist in the American public, anxiety and uncertainty about what it can do and how it works is widespread. Continuing evaluation of public opinion on AI in healthcare is necessary to ensure alignment between patient attitudes and the technologies adopted. We conducted a representative-sample survey (total N = 203) to measure the trust of the American public towards medical AI. Primarily, we contrasted preferences for AI and human professionals to be medical decision-makers. Additionally, we measured expectations for the impact and use of medical AI in the future. We present four noteworthy results: (1) The general public strongly prefers human medical professionals make medical decisions, while at the same time believing they are more likely to make culturally biased decisions than AI. (2) The general public is more comfortable with a human reading their medical records than an AI, both now and “100 years from now.” (3) The general public is nearly evenly split between those who would trust their own doctor to use AI and those who would not. (4) Respondents expect AI will improve medical treatment but more so in the distant future than immediately.
more » « less- Award ID(s):
- 1927227
- PAR ID:
- 10478014
- Editor(s):
- Mahmoud, Ali B.
- Publisher / Repository:
- Public Library of Science
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 18
- Issue:
- 11
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0294028
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Artificial intelligence (AI) represents technologies with human‐like cognitive abilities to learn, perform, and make decisions. AI in precision agriculture (PA) enables farmers and farm managers to deploy highly targeted and precise farming practices based on site‐specific agroclimatic field measurements. The foundational and applied development of AI has matured considerably over the last 30 years. The time is now right to engage seriously with the ethics and responsible practice of AI for the well‐being of farmers and farm managers. In this paper, we identify and discuss both challenges and opportunities for improving farmers’ trust in those providing AI solutions for PA. We highlight that farmers’ trust can be moderated by how the benefits and risks of AI are perceived, shared, and distributed. We propose four recommendations for improving farmers’ trust. First, AI developers should improve model transparency and explainability. Second, clear responsibility and accountability should be assigned to AI decisions. Third, concerns about the fairness of AI need to be overcome to improve human‐machine partnerships in agriculture. Finally, regulation and voluntary compliance of data ownership, privacy, and security are needed, if AI systems are to become accepted and used by farmers.
-
School choice is an increasingly important feature of the US educational landscape. Numerous studies examine whether a particular form of school choice promotes student achievement or whether a type of school choice discourages or encourages diversity by race, ethnicity, and ability. Studies also examine attitudes toward school choice, but these studies are typically limited to the views of parents, teachers, and administrators rather than public attitudes. We contribute to this literature by studying public opinion about magnet and charter schools in five southern school districts. Using a new and unique dataset, we examine if social background characteristics, political ideology, and attitudes toward the role of public schooling, neighborhood schools, and school diversity influence citizen opinion regarding magnets and charters. We find that more educated, higher income, and older individuals do not support charters, while conservatives and Republicans do. Whites are less likely to favor magnets than other races, while the more educated are more likely to favor them. Those who believe public schools should operate for the common good support magnets, as do those who favor diverse schools. However, those who favor neighborhood schools support both charters and magnets. We interpret our findings within the context of case studies of the respective locations and suggest that public opinion studies motivate public policies regarding educational choice.
-
The increased integration of artificial intelligence (AI) technologies in human workflows has resulted in a new paradigm of AI-assisted decision making,in which an AI model provides decision recommendations while humans make the final decisions. To best support humans in decision making, it is critical to obtain a quantitative understanding of how humans interact with and rely on AI. Previous studies often model humans' reliance on AI as an analytical process, i.e., reliance decisions are made based on cost-benefit analysis. However, theoretical models in psychology suggest that the reliance decisions can often be driven by emotions like humans' trust in AI models. In this paper, we propose a hidden Markov model to capture the affective process underlying the human-AI interaction in AI-assisted decision making, by characterizing how decision makers adjust their trust in AI over time and make reliance decisions based on their trust. Evaluations on real human behavior data collected from human-subject experiments show that the proposed model outperforms various baselines in accurately predicting humans' reliance behavior in AI-assisted decision making. Based on the proposed model, we further provide insights into how humans' trust and reliance dynamics in AI-assisted decision making is influenced by contextual factors like decision stakes and their interaction experiences.more » « less
-
Recent developments in AI have provided assisting tools to support pathologists’ diagnoses. However, it remains challenging to incorporate such tools into pathologists’ practice; one main concern is AI’s insufficient workflow integration with medical decisions. We observed pathologists’ examination and discovered that the main hindering factor to integrate AI is its incompatibility with pathologists’ workflow. To bridge the gap between pathologists and AI, we developed a human-AI collaborative diagnosis tool — xPath — that shares a similar examination process to that of pathologists, which can improve AI’s integration into their routine examination. The viability of xPath is confirmed by a technical evaluation and work sessions with twelve medical professionals in pathology. This work identifies and addresses the challenge of incorporating AI models into pathology, which can offer first-hand knowledge about how HCI researchers can work with medical professionals side-by-side to bring technological advances to medical tasks towards practical applications.more » « less