skip to main content

Title: Palau’s warmest reefs harbor thermally tolerant corals that thrive across different habitats
Abstract Ocean warming is killing corals, but heat-tolerant populations exist; if protected, they could replenish affected reefs naturally or through restoration. Palau’s Rock Islands experience consistently higher temperatures and extreme heatwaves, yet their diverse coral communities bleach less than those on Palau’s cooler outer reefs. Here, we combined genetic analyses, bleaching histories and growth rates of Porites cf. lobata colonies to identify thermally tolerant genotypes, map their distribution, and investigate potential growth trade-offs. We identified four genetic lineages of P . cf. lobata . On Palau’s outer reefs, a thermally sensitive lineage dominates. The Rock Islands harbor two lineages with enhanced thermal tolerance; one of which shows no consistent growth trade-off and also occurs on several outer reefs. This suggests that the Rock Islands provide naturally tolerant larvae to neighboring areas. Finding and protecting such sources of thermally-tolerant corals is key to reef survival under 21 st century climate change.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Communications Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Filamentous viruses are hypothesized to play a role in stony coral tissue loss disease (SCTLD) through infection of the endosymbiotic dinoflagellates (Family Symbiodiniaceae) of corals. To evaluate this hypothesis, it is critical to understand the global distribution of filamentous virus infections across the genetic diversity of Symbiodiniaceae hosts. Using transmission electron microscopy, we demonstrate that filamentous virus-like particles (VLPs) are present in over 60% of Symbiodiniaceae cells (genusCladocopium) within Pacific corals (Acropora hyacinthus,Porites c.f. lobata); these VLPs are more prevalent in Symbiodiniaceae of in situ colonies experiencing heat stress. Symbiodiniaceae expelled fromA. hyacinthusalso contain filamentous VLPs, and these cells are more degraded than theirin hospitecounterparts. Similar to VLPs reported from SCTLD-affected Caribbean reefs, VLPs range from ~150 to 1500 nm in length and 16–37 nm in diameter and appear to constitute various stages in a replication cycle. Finally, we demonstrate that SCTLD-affected corals containing filamentous VLPs are dominated by diverse Symbiodiniaceae lineages from the generaBreviolum, Cladocopium, andDurusdinium. Although this study cannot definitively confirm or refute the role of filamentous VLPs in SCTLD, it demonstrates that filamentous VLPs are not solely observed in SCTLD-affected corals or reef regions, nor are they solely associated with corals dominated by members of a particular Symbiodiniaceae genus. We hypothesize that filamentous viruses are a widespread, common group that infects Symbiodiniaceae. Genomic characterization of these viruses and empirical tests of the impacts of filamentous virus infection on Symbiodiniaceae and coral colonies should be prioritized.

    more » « less
  2. Abstract

    Many broadly‐dispersing corals acquire their algal symbionts (Symbiodiniaceae) “horizontally” from their environment upon recruitment. Horizontal transmission could promote coral fitness across diverse environments provided that corals can associate with divergent algae across their range and that these symbionts exhibit reduced dispersal potential. Here we quantified community divergence ofCladocopiumalgal symbionts in two coral host species (Acropora hyacinthus, Acropora digitifera) across two spatial scales (reefs on the same island, and between islands) across the Micronesian archipelago using microsatellites. We find that both hosts associated with a variety of multilocus genotypes (MLG) within two genetically distinctCladocopiumlineages (C40, C21), confirming thatAcroporacoral hosts associate with a range ofCladocopiumsymbionts across this region. Both C40 and C21 included multiple asexual lineages bearing identical MLGs, many of which spanned host species, reef sites within islands, and even different islands. Both C40 and C21 exhibited moderate host specialization and divergence across islands. In addition, within every island, algal symbiont communities were significantly clustered by both host species and reef site, highlighting that coral‐associatedCladocopiumcommunities are structured across small spatial scales and within hosts on the same reef. This is in stark contrast to their coral hosts, which never exhibited significant genetic divergence between reefs on the same island. These results support the view that horizontal transmission could improve local fitness for broadly dispersingAcroporacoral species.

    more » « less
  3. The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose–response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in F v /F m ED50), with highly reproducible rankings across independent tests ( r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide. 
    more » « less
  4. Abstract

    Some corals may become more resistant to bleaching by shuffling their Symbiodiniaceae communities toward thermally tolerant species, and manipulations to boost the abundance of these symbionts in corals may increase resilience in warming oceans. However, the thermotolerant symbiontDurusdinium trenchiimay reduce growth and fecundity in Caribbean corals, and these tradeoffs need to be better understood as this symbiont spreads through the region. We sought to understand howD. trenchiimodulates coral gene expression by manipulating symbiont communities inMontastraea cavernosato produce replicate ramets containingD. trenchiitogether with paired ramets of these same genets (n = 3) containingCladocopiumC3 symbionts. We then examined differences in global gene expression between corals hostingDurusdiniumandCladocopiumunder control temperatures, and in response to short‐term heat stress. We identified numerous transcriptional differences associated with symbiont identity, which explained 2%–14% of the transcriptional variance. Corals withD. trenchiiupregulated genes related to translation, ribosomal structure and biogenesis, and downregulated genes related to extracellular structures, and carbohydrate and lipid transport and metabolism, relative to corals withCladocopium. Unexpectedly, these changes were similar to those observed inCladocopium‐dominated corals in response to heat stress, suggesting that thermotolerantD. trenchiimay cause corals to increase expression of heat stress‐responsive genes, explaining both the increased heat tolerance and the associated energetic tradeoffs in corals containingD. trenchii. These findings provide insight into the ecological changes occurring on contemporary coral reefs in response to climate change, and the diverse ways in which different symbionts modulate emergent phenotypes of their hosts.

    more » « less
  5. Abstract

    Interest is growing in developing conservation strategies to restore and maintain coral reef ecosystems in the face of mounting anthropogenic stressors, particularly climate warming and associated mass bleaching events. One such approach is to propagate coral coloniesex situand transplant them to degraded reef areas to augment habitat for reef‐dependent fauna, prevent colonization from spatial competitors, and enhance coral reproductive output. In addition to such “demographic restoration” efforts, manipulating the thermal tolerance of outplanted colonies through assisted relocation, selective breeding, or genetic engineering is being considered for enhancing rates of evolutionary adaptation to warming. Although research into such “assisted evolution” strategies has been growing, their expected performance remains unclear. We evaluated the potential outcomes of demographic restoration and assisted evolution in climate change scenarios using an eco‐evolutionary simulation model. We found that supplementing reefs with pre‐existing genotypes (demographic restoration) offers little climate resilience benefits unless input levels are large and maintained for centuries. Supplementation with thermally resistant colonies was successful at improving coral cover at lower input levels, but only if maintained for at least a century. Overall, we found that, although demographic restoration and assisted evolution have the potential to improve long‐term coral cover, both approaches had a limited impact in preventing severe declines under climate change scenarios. Conversely, with sufficient natural genetic variance and time, corals could readily adapt to warming temperatures, suggesting that restoration approaches focused on building genetic variance may outperform those based solely on introducing heat‐tolerant genotypes.

    more » « less