skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring multi-year changes in the Symbiodiniaceae algae in Caribbean corals on coral-depleted reefs
Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.  more » « less
Award ID(s):
2019992 1851305 1851392
PAR ID:
10520320
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
Banaszak, A
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
12
ISSN:
2167-8359
Page Range / eLocation ID:
e17358
Subject(s) / Keyword(s):
Symbiodiniacaea coral Caribbean
Format(s):
Medium: X Size: n/a Other: n/a
Size(s):
n/a
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background The microbiomes of foundation (habitat-forming) species such as corals and sponges underpin the biodiversity, productivity, and stability of ecosystems. Consumers shape communities of foundation species through trophic interactions, but the role of consumers in dispersing the microbiomes of such species is rarely examined. For example, stony corals rely on a nutritional symbiosis with single-celled endosymbiotic dinoflagellates (family Symbiodiniaceae) to construct reefs. Most corals acquire Symbiodiniaceae from the environment, but the processes that make Symbiodiniaceae available for uptake are not resolved. Here, we provide the first comprehensive, reef-scale demonstration that predation by diverse coral-eating (corallivorous) fish species promotes the dispersal of Symbiodiniaceae, based on symbiont cell densities and community compositions from the feces of four obligate corallivores, three facultative corallivores, two grazer/detritivores as well as samples of reef sediment and water. Results Obligate corallivore feces are environmental hotspots of Symbiodiniaceae cells: live symbiont cell concentrations in such feces are 5–7 orders of magnitude higher than sediment and water environmental reservoirs. Symbiodiniaceae community compositions in the feces of obligate corallivores are similar to those in two locally abundant coral genera ( Pocillopora and Porites ), but differ from Symbiodiniaceae communities in the feces of facultative corallivores and grazer/detritivores as well as sediment and water. Combining our data on live Symbiodiniaceae cell densities in feces with in situ observations of fish, we estimate that some obligate corallivorous fish species release over 100 million Symbiodiniaceae cells per 100 m 2 of reef per day. Released corallivore feces came in direct contact with coral colonies in the fore reef zone following 91% of observed egestion events, providing a potential mechanism for the transfer of live Symbiodiniaceae cells among coral colonies. Conclusions Taken together, our findings show that fish predation on corals may support the maintenance of coral cover on reefs in an unexpected way: through the dispersal of beneficial coral symbionts in corallivore feces. Few studies examine the processes that make symbionts available to foundation species, or how environmental reservoirs of such symbionts are replenished. This work sets the stage for parallel studies of consumer-mediated microbiome dispersal and assembly in other sessile, habitat-forming species. 
    more » « less
  2. Abstract Corals have complex symbiotic associations that can be influenced by the environment. We compare symbiotic dinoflagellate (family: Symbiodiniaceae) associations and the microbiome of five scleractinian coral species from three different reef habitats in Palau, Micronesia. Although pH and temperature corresponded with specific host‐Symbiodiniaceae associations common to the nearshore and offshore habitats, bacterial community dissimilarity analyses indicated minimal influence of these factors on microbial community membership for the coralsCoelastrea aspera,Psammocora digitata, andPachyseris rugosa. However, coral colonies sampled close to human development exhibited greater differences in microbial community diversity compared to the nearshore habitat for the coral speciesCoelastrea aspera,Montipora foliosa, andPocillopora acuta, and the offshore habitat forCoelastrea aspera, while also showing less consistency in Symbiodiniaceae associations. These findings indicate the influence that habitat location has on the bacterial and Symbiodiniaceae communities comprising the coral holobiont and provide important considerations for the conservation of coral reef communities, especially for island nations with increasing human populations and development. 
    more » « less
  3. Abstract While the presence of morphologically cryptic species is increasingly recognized, we still lack a useful understanding of what causes and maintains co‐occurring cryptic species and its consequences for the ecology, evolution, and conservation of communities. We sampled 724Pocilloporacorals from five habitat zones (the fringing reef, back reef, and fore reef at 5, 10, and 20 m) at four sites around the island of Moorea, French Polynesia. Using validated genetic markers, we identified six sympatric species ofPocillopora, most of which cannot be reliably identified based on morphology:P. meandrina(42.9%),P. tuahiniensis(25.1%),P. verrucosa(12.2%),P. acuta(10.4%),P. grandis(7.73%), andP.cf.effusa(2.76%). For 423 colonies (58% of the genetically identified hosts), we also usedpsbAncror ITS2 markers to identify symbiont species (Symbiodiniaceae). The relative abundance ofPocilloporaspecies differed across habitats within the reef. Sister taxaP. verrucosaandP. tuahiniensishad similar niche breadths and hosted the same specialist symbiont species (mostlyCladocopium pacificum) but the former was more common in the back reef and the latter more common deeper on the fore reef. In contrast, sister taxaP. meandrinaandP. grandishad the highest niche breadths and overlaps and tended to host the same specialist symbiont species (mostlyC. latusorum).Pocillopora acutahad the narrowest niche breadth and hosted the generalist, and more thermally tolerant,Durusdinium gynnii. Overall, there was a positive correlation between reef habitat niche breadth and symbiont niche breadth—Pocilloporaspecies with a broader habitat niche also had a broader symbiont niche. Our results show how fine‐scale variation within reefs plays an important role in the generation and coexistence of cryptic species. The results also have important implications for how niche differences affect community resilience, and for the success of coral restoration practices, in ways not previously appreciated. 
    more » « less
  4. Unlike reef-building, scleractinian corals, Caribbean soft corals (octocorals) have not suffered marked declines in abundance associated with anthropogenic ocean warming. Both octocorals and reef-building scleractinians depend on a nutritional symbiosis with single-celled algae living within their tissues. In both groups, increased ocean temperatures can induce symbiont loss (bleaching) and coral death. Multiple heat waves from 2014 to 2016 resulted in widespread damage to reef ecosystems and provided an opportunity to examine the bleaching response of three Caribbean octocoral species. Symbiont densities declined during the heat waves but recovered quickly, and colony mortality was low. The dominant symbiont genotypes within a host generally did not change, and all colonies hosted symbiont species in the genusBreviolum.Their association with thermally tolerant symbionts likely contributes to the octocoral holobiont’s resistance to mortality and the resilience of their symbiont populations. The resistance and resilience of Caribbean octocorals offer clues for the future of coral reefs. 
    more » « less
  5. Abstract Coral reefs are iconic examples of climate change impacts because climate-induced heat stress causes the breakdown of the coral-algal symbiosis leading to a spectacular loss of color, termed ‘coral bleaching’. To examine the fine-scale dynamics of this process, we re-sampled 600 individually marked Montipora capitata colonies from across Kāne’ohe Bay, Hawai’i and compared the algal symbiont composition before and after the 2019 bleaching event. The relative proportion of the heat-tolerant symbiont Durusdinium in corals increased in most parts of the bay following the bleaching event. Despite this widespread increase in abundance of Durusdinium , the overall algal symbiont community composition was largely unchanged, and hydrodynamically defined regions of the bay retained their distinct pre-bleaching compositions. We explain ~ 21% of the total variation, of which depth and temperature variability were the most significant environmental drivers of Symbiodiniaceae community composition by site regardless of bleaching intensity or change in relative proportion of Durusdinium . We hypothesize that the plasticity of symbiont composition in corals may be constrained to adaptively match the long-term environmental conditions surrounding the holobiont, despite an individual coral’s stress and bleaching response. 
    more » « less