Motivated by distributed data processing applications, we introduce a class of labeled directed acyclic graphs constructed using sequential and parallel composition operations, and study automata and logics over them. We show that deterministic and non-deterministic acceptors over such graphs have the same expressive power, which can be equivalently characterized by Monadic Second-Order logic and the graded µ-calculus. We establish closure under composition operations and decision procedures for membership, emptiness, and inclusion. A key feature of our graphs, calledsynchronized series-parallel graphs(SSPG), is that parallel composition introduces a synchronization edge from the newly introduced source vertex to the sink. The transfer of information enabled by such edges is crucial to the determinization construction, which would not be possible for the traditional definition of series-parallel graphs. SSPGs allow both ordered ranked parallelism and unordered unranked parallelism. The latter feature means that in the corresponding automata, the transition function needs to account for an arbitrary number of predecessors by counting each type of state only up to a specified constant, thus leading to a notion ofcounting complexitythat is distinct from the classical notion of state complexity. The determinization construction translates a nondeterministic automaton withnstates andkcounting complexity to a deterministic automaton with 2n2states andkncounting complexity, and both these bounds are shown to be tight. Furthermore, for nondeterministic automata a bound of 2 on counting complexity suffices without loss of expressiveness.
more »
« less
Divide-and-Conquer Determinization of Büchi Automata Based on SCC Decomposition
The determinization of a nondeterministic Büchi automaton (NBA) is a fundamental construction of automata theory, with applications to probabilistic verification and reactive synthesis. The standard determinization constructions, such as the ones based on the Safra-Piterman’s approach, work on the whole NBA. In this work we propose a divide-and-conquer determinization approach. To this end, we first classify the strongly connected components (SCCs) of the given NBA as inherently weak, deterministic accepting, and nondeterministic accepting. We then present how to determinize each type of SCC independently from the others; this results in an easier handling of the determinization algorithm that takes advantage of the structure of that SCC. Once all SCCs have been determinized, we show how to compose them so to obtain the final equivalent deterministic Emerson-Lei automaton, which can be converted into a deterministic Rabin automaton without blow-up of states and transitions. We implement our algorithm in our tool COLA and empirically evaluate COLA with the state-of-the-art tools Spot and Owl on a large set of benchmarks from the literature. The experimental results show that our prototype COLA outperforms Spot and Owl regarding the number of states and transitions.
more »
« less
- Award ID(s):
- 1704883
- PAR ID:
- 10391914
- Date Published:
- Journal Name:
- Book cover Book cover International Conference on Computer Aided Verification
- Page Range / eLocation ID:
- 152-173
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bouajjani, A.; Holík, L.; Wu, Z. (Ed.)When omega-regular objectives were first proposed in model-free reinforcement learning (RL) for controlling MDPs, deterministic Rabin automata were used in an attempt to provide a direct translation from their transitions to scalar values. While these translations failed, it has turned out that it is possible to repair them by using good-for-MDPs (GFM) Buechi automata instead. These are nondeterministic Buechi automata with a restricted type of nondeterminism, albeit not as restricted as in good-for-games automata. Indeed, deterministic Rabin automata have a pretty straightforward translation to such GFM automata, which is bi-linear in the number of states and pairs. Interestingly, the same cannot be said for deterministic Streett automata: a translation to nondeterministic Rabin or Buechi automata comes at an exponential cost, even without requiring the target automaton to be good-for-MDPs. Do we have to pay more than that to obtain a good-for-MDPs automaton? The surprising answer is that we have to pay significantly less when we instead expand the good-for-MDPs property to alternating automata: like the nondeterministic GFM automata obtained from deterministic Rabin automata, the alternating good-for-MDPs automata we produce from deterministic Streett automata are bi-linear in the size of the deterministic automaton and its index. They can therefore be exponentially more succinct than the minimal nondeterministic Buechi automaton.more » « less
-
Megow, Nicole; Smith, Adam (Ed.)The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols for nondeterministic algorithms directly to get faster verifiers. More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in which the verifier runs in time Õ(n+S²). This improves on the best previous bound of Õ(n+S³) and matches the result for deterministic space bounded algorithms, up to polylog(S) factors. We further generalize to alternating bounded space algorithms. For any language L decided by a time T, space S algorithm that uses d alternations, we construct an interactive proof in which the verifier runs in time Õ(n + S log(T) + S d) and the prover runs in time 2^O(S). For d = O(log(T)), this matches the best known interactive proofs for deterministic algorithms, up to polylog(S) factors, and improves on the previous best verifier time for nondeterministic algorithms by a factor of log(T). We also improve the best prior verifier time for unbounded alternations by a factor of S. Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain faster verifiers for bounded depth circuits with unbounded fan-in.more » « less
-
Computing strongly connected components (SCC) is among the most fundamental problems in graph analytics. Given the large size of today's real-world graphs, parallel SCC implementation is increasingly important. SCC is challenging in the parallel setting and is particularly hard on large-diameter graphs. Many existing parallel SCC implementations can be even slower than Tarjan's sequential algorithm on large-diameter graphs. To tackle this challenge, we propose an efficient parallel SCC implementation using a new parallel reachability approach. Our solution is based on a novel idea referred to as vertical granularity control (VGC). It breaks the synchronization barriers to increase parallelism and hide scheduling overhead. To use VGC in our SCC algorithm, we also design an efficient data structure called the parallel hash bag. It uses parallel dynamic resizing to avoid redundant work in maintaining frontiers (vertices processed in a round). We implement the parallel SCC algorithm by Blelloch et al. (J. ACM, 2020) using our new parallel reachability approach. We compare our implementation to the state-of-the-art systems, including GBBS, iSpan, Multi-step, and our highly optimized Tarjan's (sequential) algorithm, on 18 graphs, including social, web, k-NN, and lattice graphs. On a machine with 96 cores, our implementation is the fastest on 16 out of 18 graphs. On average (geometric means) over all graphs, our SCC is 6.0× faster than the best previous parallel code (GBBS), 12.8× faster than Tarjan's sequential algorithms, and 2.7× faster than the best existing implementation on each graph. We believe that our techniques are of independent interest. We also apply our parallel hash bag and VGC scheme to other graph problems, including connectivity and least-element lists (LE-lists). Our implementations improve the performance of the state-of-the-art parallel implementations for these two problems.more » « less
-
Bouajjani, A.; Holík, L.; Wu, Z. (Ed.)The expanding role of reinforcement learning (RL) in safety-critical system design has promoted omega-automata as a way to express learning requirements—often non-Markovian—with greater ease of expression and interpretation than scalar reward signals. When 𝜔-automata were first proposed in model-free RL, deterministic Rabin acceptance conditions were used in an attempt to provide a direct translation from omega-automata to finite state “reward” machines defined over the same automaton structure (a memoryless reward translation). While these initial attempts to provide faithful, memoryless reward translations for Rabin acceptance conditions remained unsuccessful, translations were discovered for other acceptance conditions such as suitable, limit-deterministic Buechi acceptance or more generally, good-for-MDP Buechi acceptance conditions. Yet, the question “whether a memoryless translation of Rabin conditions to scalar rewards exists” remained unresolved. This paper presents an impossibility result implying that any attempt to use Rabin automata directly (without extra memory) for model-free RL is bound to fail. To establish this result, we show a link between a class of automata enabling memoryless reward translation to closure properties of its accepting and rejecting infinity sets, and to the insight that both the property and its complement need to allow for positional strategies for such an approach to work. We believe that such impossibility results will provide foundations for the application of RL to safety-critical systems.more » « less
An official website of the United States government

