Electrically accelerated self‐healable poly(ionic liquids) copolymers that exhibit resistor‐capacitor (RC) circuit properties are developed. At low alternating current (AC) frequencies these materials behave as a resistor (R), whereas at higher frequencies as a capacitor (C). These properties are attributed to a combination of dipolar and electrostatic interactions in (1‐[(2‐methacryloyloxy)ethyl]‐3‐butylimidazolium bis(trifluoromethyl‐sulfonyl)imide) copolymerized with methyl methacrylate (MMA) monomers to form p(MEBIm‐TSFI/MMA)] copolymers. When the monomer molar ratio (MEBIm‐TSFI:MMA) is 40/60, these copolymers are capable of undergoing multiple damage‐repair cycles and self‐healing is accelerated by the application of alternating 1.0–4.0 V electric field (EF). Self‐healing in the absence of EFs is facilitated by van der Waals (vdW) interactions, but the application of AC EF induces back and forth movement of charges against the opposing force that result in dithering of electrostatic dipoles giving rise to interchain physical crosslinks. Electrostatic inter‐ and intrachain interactions facilitated by copolymerization of ionic liquid monomers with typically dielectric acrylic‐based monomers result in enhanced cohesive energy densities that accelerate the recovery of vdW forces facilitating self‐healing. Incorporating ionic liquids into commodity polymers offers promising uses as green conducting solid polyelectrolytes in self‐healable energy storage, energy‐harvesting devices, and many other applications.
more » « less- Award ID(s):
- 2003005
- PAR ID:
- 10392121
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 24
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Previous studies have shown that copolymer compositions can significantly impact self-healing properties. This was accomplished by enhancement of van der Waals (vdW) forces which facilitate self-healing in relatively narrow copolymer compositional range. In this work we report the acceleration of self-healing in alternating/random hydrophobic acrylic-based copolymers in the presence of confined water molecules. Under these conditions competing vdW interactions do not allow H 2 O-diester H-bonding, thus forcing nBA side groups to adapt L-shape conformations, generating stronger dipole-dipole interactions resulting in shorter inter-chain distances compared to ‘key-and-lock’ associations without water. The perturbation of vdW forces upon mechanical damage in the presence of controllable amount of confined water is energetically unfavorable leading the enhancement of self-healing efficiency of hydrophobic copolymers by a factor of three. The concept may be applicable to other self-healing mechanisms involving reversible covalent bonding, supramolecular chemistry, or polymers with phase-separated morphologies.more » « less
-
Abstract Although dipolar forces between copolymer chains are relatively weak, they result in ubiquitous inter‐ and/or intramolecular interactions which are particularly critical in achieving the mechanical integrity of polymeric materials. In this study, a route is developed to obtain self‐healable properties in thermoplastic copolymers that rely on noncovalent dipolar interactions present in essentially all macromolecules and particularly fluorine‐containing copolymers. The combination of dipolar interactions between C─F and C═O bonds as well as CH2/CH3entities facilitates self‐healing without external intervention. The presence of dipole‐dipole, dipole‐induced dipole, and induced‐dipole induced dipole interactions leads to a viscoelastic response that controls macroscopic autonomous multicycle self‐healing of fluorinated copolymers under ambient conditions. Energetically favorable dipolar forces attributed to monomer sequence and monomer molar ratios induces desirable copolymer tacticities, enabling entropic energy recovery stored during mechanical damage. The use of dipolar forces instead of chemical or physical modifications not only eliminates additional alternations enabling multiple damage‐repair cycles but also provides further opportunity for designing self‐healable commodity thermoplastics. These materials may offer numerous applications, ranging from the use in electronics, ion batteries, H2fuel dispense hoses to self‐healable pet toys, packaging, paints and coatings, and many others.
-
Self-healing materials are notable for their ability to recover from physical or chemical damage. We report that commodity copolymers, such as poly(methyl methacrylate)/n-butyl acrylate [p(MMA/nBA)] and their derivatives, can self-heal upon mechanical damage. This behavior occurs in a narrow compositional range for copolymer topologies that are preferentially alternating with a random component (alternating/random) and is attributed to favorable interchain van der Waals forces forming key-and-lock interchain junctions. The use of van der Waals forces instead of supramolecular or covalent rebonding or encapsulated reactants eliminates chemical and physical alterations and enables multiple recovery upon mechanical damage without external intervention. Unlike other self-healing approaches, perturbation of ubiquitous van der Waals forces upon mechanical damage is energetically unfavorable for interdigitated alternating/random copolymer motifs that facilitate self-healing under ambient conditions.
-
Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-inspired bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications.more » « less
-
Abstract The electron-induced secondary electron emission (SEE) yields of imidazolium-based ionic liquids are presented for primary electron beam energies between 30 and 1000 eV. These results are important for understanding plasma synthesis of nanoparticles in plasma discharges with an ionic liquid electrode. Due to their low vapor pressure and high conductivity, ionic liquids can produce metal nanoparticles in low-pressure plasmas through reduction of dissolved metal salts. In this work, the low vapor pressure of ionic liquids is exploited to directly measure SEE yields by bombarding the liquid with electrons and measuring the resulting currents. The ionic liquids studied are [BMIM][Ac], [EMIM][Ac], and [BMIM][BF4]. The SEE yields vary significantly over the energy range, with maximum yields of around 2 at 200 eV for [BMIM][Ac] and [EMIM][Ac], and 1.8 at 250 eV for [BMIM][BF4]. Molecular orbital calculations indicate that the acetate anion is the likely electron donor for [BMIM][Ac] and [EMIM][Ac], while in [BMIM][BF4], the electrons likely originate from the [BMIM]+cation. The differences in SEE yields are attributed to varying ionization potentials and molecular structures of the ionic liquids. These findings are essential for accurate modeling of plasma discharges and understanding SEE mechanisms in ionic liquids.