skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2003005

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Commodity aliphatic and aromatic acrylic‐based copolymers self‐heal due to ubiquitouskey‐and‐lock,ring‐and‐lock, andfluorophilic‐σ‐lockvan der Waals (vdW) interactions. However, the role of these interactions in the presence of covalently copolymerized ionic liquid (IL) is not known. This study is driven by the hypothesis that covalently incorporated cation–anion pairs to form poly(ionic liquid) copolymers (PILCs) can perturb inter‐ or intra‐chain vdW interactions reflected in mechanical and electrical responses. To test this hypothesis, we synthesized a series of PILCs comprising of pentafluorostyrene (PFS) and imidazolium‐based IL monomers with variable‐length aliphatic tails (methyl and butyl). Using a combination of 2D1H‐1H and19F ‐19F NOESY NMR and FTIR measurements supplemented by molecular dynamic (MD) simulations, these studies demonstrate that preferentially alternating/random PILCs topologies facilitate self‐healing. The introduction of cation–anion moieties modifies thefluorophilic‐σ‐lockinteractions and, along with longer aliphatic tails ─(CH2)3CH3covalently attached to the imidazolium cation, enhances cation‐anion mobility, thus faster recovery from mechanical damage occurs. These findings underline how precise control over dipolar and ionic interactions through copolymer composition enables self‐healing in PILCs. These insights may open pathways for designing sustainable, mechanically resilient materials for applications in energy storage and energy harvesting. 
    more » « less
    Free, publicly-accessible full text available August 18, 2026
  2. Abstract Electrically accelerated self‐healable poly(ionic liquids) copolymers that exhibit resistor‐capacitor (RC) circuit properties are developed. At low alternating current (AC) frequencies these materials behave as a resistor (R), whereas at higher frequencies as a capacitor (C). These properties are attributed to a combination of dipolar and electrostatic interactions in (1‐[(2‐methacryloyloxy)ethyl]‐3‐butylimidazolium bis(trifluoromethyl‐sulfonyl)imide) copolymerized with methyl methacrylate (MMA) monomers to form p(MEBIm‐TSFI/MMA)] copolymers. When the monomer molar ratio (MEBIm‐TSFI:MMA) is 40/60, these copolymers are capable of undergoing multiple damage‐repair cycles and self‐healing is accelerated by the application of alternating 1.0–4.0 V electric field (EF). Self‐healing in the absence of EFs is facilitated by van der Waals (vdW) interactions, but the application of AC EF induces back and forth movement of charges against the opposing force that result in dithering of electrostatic dipoles giving rise to interchain physical crosslinks. Electrostatic inter‐ and intrachain interactions facilitated by copolymerization of ionic liquid monomers with typically dielectric acrylic‐based monomers result in enhanced cohesive energy densities that accelerate the recovery of vdW forces facilitating self‐healing. Incorporating ionic liquids into commodity polymers offers promising uses as green conducting solid polyelectrolytes in self‐healable energy storage, energy‐harvesting devices, and many other applications. 
    more » « less
  3. Abstract Although dipolar forces between copolymer chains are relatively weak, they result in ubiquitous inter‐ and/or intramolecular interactions which are particularly critical in achieving the mechanical integrity of polymeric materials. In this study, a route is developed to obtain self‐healable properties in thermoplastic copolymers that rely on noncovalent dipolar interactions present in essentially all macromolecules and particularly fluorine‐containing copolymers. The combination of dipolar interactions between C─F and C═O bonds as well as CH2/CH3entities facilitates self‐healing without external intervention. The presence of dipole‐dipole, dipole‐induced dipole, and induced‐dipole induced dipole interactions leads to a viscoelastic response that controls macroscopic autonomous multicycle self‐healing of fluorinated copolymers under ambient conditions. Energetically favorable dipolar forces attributed to monomer sequence and monomer molar ratios induces desirable copolymer tacticities, enabling entropic energy recovery stored during mechanical damage. The use of dipolar forces instead of chemical or physical modifications not only eliminates additional alternations enabling multiple damage‐repair cycles but also provides further opportunity for designing self‐healable commodity thermoplastics. These materials may offer numerous applications, ranging from the use in electronics, ion batteries, H2fuel dispense hoses to self‐healable pet toys, packaging, paints and coatings, and many others. 
    more » « less
  4. Abstract Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli‐responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color‐changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane‐based polymers containing responsive elements built into their architecture. In the context of stimuli‐responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled. 
    more » « less
  5. Many materials exhibit static and functional properties. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. It is well-established that interfaces play critical roles in biological and synthetic processes. Aside from significant practical applications, the most accessible and measurable quantity is interfacial tension, which represents a measure of the energy required to create or rejoin two surfaces. Owing to the fact that interfacial processes are critical in polymeric materials, this review outlines recent advances in dynamic interfacial processes involving physics and chemistry targeting self-healing. Entropic interfacial energies stored during damage participate in the recovery, and self-healing depends upon copolymer composition and monomer sequence, monomer molar ratios, molecular weight, and polymer dispersity. These properties ultimately impact chain flexibility, shape-memory recovery, and interfacial interactions. Self-healing is a localized process with global implications on mechanical and other properties. Selected examples driven by interfacial flow and shape memory effects are discussed in the context of covalent and supramolecular rebonding targeting self-healable materials development. 
    more » « less
  7. Driven by synthetic advances combined with the ability of processing and characterization methods, multi-stimulus responsive (MSR) polymers offer technological opportunities with significant societal impacts. The purpose of this perspective is not to itemize every possible MSR polymer system but instead to highlight recent advances along with current and future trends that redefined modern polymer science. In the context of spatiotemporal and energetic requirements, this perspective explores multi-stimulus responses driven by compositional, structural, and hierarchical macromolecular arrangements, where multi-stimulus may be achieved by combining mechano-responsiveness, pH changes, electromagnetic radiation, magnetic/electric fields, redox reactions, humidity and temperature changes, solvents and gases, or biologically triggered responses. Multi-stimulus responses may be orthogonal, competitive, or synergistic and governed by the redefined principles in developing polymers with signaling and communications, encoding phenotypic properties with precisely defined sequences, programmable assembly/disassembly, and recognition attributes, and MSR materials will pave the next generations of ingenious technological advances with living-like attributes. 
    more » « less
  8. Commodity copolymers offer many useful applications, and their durability is critical in maintaining desired functions and retaining sustainability. These studies show that primarily alternating styrene/n-butyl acrylate [p(Sty/nBA)] copolymers self-heal without external intervention when monomer molar ratios are within the 45:55–53:47 range. This behavior is attributed to the favorable interchain interactions between aliphatic nBA side groups being sandwiched by aromatic rings forming ring-and-lock associations driven by pi–sigma–pi (π–σ–π) interactions. Guided by molecular dynamics (MD) simulations combined with spectroscopic and thermomechanical analysis, the ring-and-lock interchain van der Waals forces between π orbitals of aromatic rings and sigma components of aliphatic side groups are responsible for self-healing. Despite the frequent occurrence of these interactions in biological systems (proteins, nucleic acids, lipids, and polysaccharides), these largely unexplored weak and ubiquitous molecular forces between the soft acid aliphatic and soft base aromatic electrons may be valuable assets in the development of polymeric materials with sustainable properties. 
    more » « less
  9. null (Ed.)
    Abstract Previous studies have shown that copolymer compositions can significantly impact self-healing properties. This was accomplished by enhancement of van der Waals (vdW) forces which facilitate self-healing in relatively narrow copolymer compositional range. In this work we report the acceleration of self-healing in alternating/random hydrophobic acrylic-based copolymers in the presence of confined water molecules. Under these conditions competing vdW interactions do not allow H 2 O-diester H-bonding, thus forcing nBA side groups to adapt L-shape conformations, generating stronger dipole-dipole interactions resulting in shorter inter-chain distances compared to ‘key-and-lock’ associations without water. The perturbation of vdW forces upon mechanical damage in the presence of controllable amount of confined water is energetically unfavorable leading the enhancement of self-healing efficiency of hydrophobic copolymers by a factor of three. The concept may be applicable to other self-healing mechanisms involving reversible covalent bonding, supramolecular chemistry, or polymers with phase-separated morphologies. 
    more » « less