Thermoset polymers and fiber-reinforced polymer composites possess the chemical, physical, and mechanical properties necessary for energy-efficient vehicles and structures, but their energy-inefficient manufacturing and the lack of end-of-life management strategies render these materials unsustainable. Here, we demonstrate end-of-life deconstruction and upcycling of high-performance poly(dicyclopentadiene) (pDCPD) thermosets with a concurrent reduction in the energy demand for curing via frontal copolymerization. Triggered material deconstruction is achieved through cleavage of cyclic silyl ethers and acetals incorporated into pDCPD thermosets. Both solution-state and bulk experiments reveal that seven- and eight-membered cyclic silyl ethers and eight-membered cyclic acetals are incorporated efficiently with norbornene-derived monomers, permitting deconstruction at low comonomer loadings. Frontal copolymerization of DCPD with these tailored cleavable comonomers enables energy-efficient manufacturing of sustainable, high-performance thermosets with glass transition temperatures of >100 °C and elastic moduli of >1 GPa. The polymers are fully deconstructed, yielding hydroxyl-terminated oligomers that are upcycled to polyurethane-containing thermosets having a higher glass transition temperatures than that of the original polymer upon reaction with diisocyanates. This approach is extended to frontally polymerized fiber-reinforced composites, where large-fiber volume fraction composites (Vf = 65%) containing a cleavable comonomer are deconstructed and the reclaimed fibers are used to regenerate composites via frontal polymerization that display properties nearly identical to those of the original. This work demonstrates that the use of cleavable monomers, in combination with frontal manufacturing, provides a promising strategy to address sustainability challenges for high-performance materials at multiple stages of their lifecycle.
more »
« less
Remolding and Deconstruction of Industrial Thermosets via Carboxylic Acid-Catalyzed Bifunctional Silyl Ether Exchange
Convenient strategies for the deconstruction and reprocessing of thermosets could improve the circularity of these materials, but most approaches developed to date do not involve established, high-performance engineering materials. Here, we show that bifunctional silyl ether, i.e., R′O–SiR2–OR′′, (BSE)-based comonomers generate covalent adaptable network analogues of the industrial thermoset polydicyclopentadiene (pDCPD) through a novel BSE exchange process facilitated by the low-cost food-safe catalyst octanoic acid. Experimental studies and density functional theory calculations suggest an exchange mechanism involving silyl ester intermediates with formation rates that strongly depend on the Si–R2 substituents. As a result, pDCPD thermosets manufactured with BSE comonomers display temperature- and time-dependent stress relaxation as a function of their substituents. Moreover, bulk remolding of pDCPD thermosets is enabled for the first time. Altogether, this work presents a new approach toward the installation of exchangeable bonds into commercial thermosets and establishes acid-catalyzed BSE exchange as a versatile addition to the toolbox of dynamic covalent chemistry.
more »
« less
- Award ID(s):
- 2116298
- PAR ID:
- 10392187
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- ISSN:
- 0002-7863
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Covalent adaptable networks (CANs) represent a novel class of polymeric materials crosslinked by dynamic covalent bonds. Since their first discovery, CANs have attracted great attention due to their high mechanical strength and stability like conventional thermosets under service conditions and easy reprocessability like thermoplastics under certain external stimuli. Here, we report the first example of ionic covalent adaptable networks (ICANs), a type of crosslinked ionomers, consisting of negatively charged backbone structures. More specifically, two ICANs with different backbone compositions were prepared through spiroborate chemistry. Given the dynamic nature of the spiroborate linkages, the resulting ionomer thermosets display rapid reprocessability and closed-loop recyclability under mild conditions. The materials mechanically broken into smaller pieces can be reprocessed into coherent solids at 120 °C within only 1 min with nearly 100% recovery of the mechanical properties. Upon treating the ICANs with dilute hydrochloric acid at room temperature, the valuable monomers can be easily chemically recycled in almost quantitative yield. This work demonstrates the great potential of spiroborate bonds as a novel dynamic ionic linkage for development of new reprocessable and recyclable ionomer thermosets.more » « less
-
Materials made from covalently cross-linked polymer networks are ubiquitous in everyday life but are difficult to process at the end of their life cycle. Therefore, it is essential to design materials with sustainability in mind to reduce the detrimental effects of plastic waste buildup. Functionalized triazines such as 1,3,5-triazine-2,4,6-triamine (melamine), hexamethylolmelamine (HMM), and hexakis(methoxymethyl)melamine (HMMM) are key components of robust thermosets, adhesives, and coatings. We combine HMM and HMMM with an alkoxysilane to produce transparent thermosets with remarkable glass adhesion. The dynamicity of silyl ether bonds in the network makes the materials susceptible to methanolysis, enabling the recovery of HMMM and the substrate. A combination of solution- and solid-phase techniques is used to elucidate both gelation and degradation pathways.more » « less
-
Vitrimers have the characteristics of shape-reforming and surface-welding, and have the same excellent mechanical properties as thermosets; so vitrimers hold the promise of a broad alternative to traditional plastics. Since their initial introduction in 2011, vitrimers have been applied to many unique applications such as reworkable composites and liquid crystal elastomer actuators. A series of experiments have investigated the effects of reprocessing conditions (such as temperature, time, and pressure) on recycled materials. However, the effect of particle size on the mechanical properties of recycled materials has not been reported. In this paper, we conducted an experimental study on the recovery of epoxy-acid vitrimers of different particle sizes. Epoxy-acid vitrimer powders with different particle size distributions were prepared and characterized. The effects of particle size on the mechanical properties of regenerated epoxy-acid vitrimers were investigated by dynamic mechanical analysis and uniaxial tensile tests. In addition, other processing parameters such as temperature, time, and pressure are discussed, as well as their interaction with particle size. This study helped to refine the vitrimer reprocessing condition parameter toolbox, providing experimental support for the easy and reliable control of the kinetics of the bond exchange reaction.more » « less
-
Connecting molecular building blocks by covalent bonds to form extended crystalline structures has caused a sharp upsurge in the field of porous materials, especially covalent organic frameworks (COFs), thereby translating the accuracy, precision, and versatility of covalent chemistry from discrete molecules to two-dimensional and three-dimensional crystalline structures. COFs are crystalline porous frameworks prepared by a bottom-up approach from predesigned symmetric units with well-defined structural properties such as a high surface area, distinct pores, cavities, channels, thermal and chemical stability, structural flexibility and functional design. Due to the tedious and sometimes impossible introduction of certain functionalities into COFs via de novo synthesis, pore surface engineering through judicious functionalization with a range of substituents under ambient or harsh conditions using the principle of coordination chemistry, chemical conversion, and building block exchange is of profound importance. In this review, we aim to summarize dynamic covalent chemistry and framework linkage in the context of design features, different methods and perspectives of pore surface engineering along with their versatile roles in a plethora of applications such as biomedical, gas storage and separation, catalysis, sensing, energy storage and environmental remediation.more » « less