skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of treating parameters on thermomechanical properties of recycled epoxy-acid vitrimers
Vitrimers have the characteristics of shape-reforming and surface-welding, and have the same excellent mechanical properties as thermosets; so vitrimers hold the promise of a broad alternative to traditional plastics. Since their initial introduction in 2011, vitrimers have been applied to many unique applications such as reworkable composites and liquid crystal elastomer actuators. A series of experiments have investigated the effects of reprocessing conditions (such as temperature, time, and pressure) on recycled materials. However, the effect of particle size on the mechanical properties of recycled materials has not been reported. In this paper, we conducted an experimental study on the recovery of epoxy-acid vitrimers of different particle sizes. Epoxy-acid vitrimer powders with different particle size distributions were prepared and characterized. The effects of particle size on the mechanical properties of regenerated epoxy-acid vitrimers were investigated by dynamic mechanical analysis and uniaxial tensile tests. In addition, other processing parameters such as temperature, time, and pressure are discussed, as well as their interaction with particle size. This study helped to refine the vitrimer reprocessing condition parameter toolbox, providing experimental support for the easy and reliable control of the kinetics of the bond exchange reaction.  more » « less
Award ID(s):
1901807
PAR ID:
10178934
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
6
ISSN:
1744-683X
Page Range / eLocation ID:
1668 to 1677
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The chemically crosslinked network structures make epoxies, the most common thermosets, unable or hard to be recycled, causing environmental problems and economic losses. Epoxy‐based vitrimers, polymer networks deriving from epoxy resins, can be thermally malleable according to bond exchange reactions (BERs), opening the door to recycle epoxy thermosets. Here a series of experiments were carried out to study the effects of processing conditions (such as particle size distributions, temperature, time, and pressure) on recycling of an epoxy‐anhydride vitrimer. Polymer powders from the epoxy‐anhydride vitrimer with different size distributions were prepared and characterized, and the influence of particle size on the mechanical performance of recycled epoxy‐anhydride vitrimers was investigated by dynamic mechanical analysis and uniaxial tensile test. Experimental results demonstrated that finer polymer powders can increase the contacting surfaces of recycled materials and thus result in high quality of recycled materials. In addition, the influences of other treating parameters, such as temperature, time, and pressure, were also discussed in this study. Adjusting these treating parameters can help the design of an optimized reprocessing procedure to meet practical engineering applications. 
    more » « less
  2. The development of vitrimers with dynamic covalent bonds enables reprocessability in crosslinked networks, offering a sustainable alternative to conventional thermosets. In this work, a thiol-acrylate vitrimer was synthesized from lignin-derivable (bis)phenols (guaiacol and bisguaiacol F) and compared to a control derived from petroleum-based precursors (phenol and bisphenol F) to investigate the effect of structural differences on network properties and thermal reprocessing. The presence of methoxy groups in the lignin-derivable vitrimer promoted intermolecular interactions by serving as additional hydrogen bonding acceptors during curing, leading to a denser network, as evidenced by a higher rubbery storage modulus (∼2.4 MPa vs. ∼1.4 MPa) and glass transition temperature (∼34 °C vs. ∼28 °C). The lignin-derivable vitrimer exhibited a slightly higher elongation-at-break (∼170% vs. ∼130%) and improved mechanical robustness, including a nearly two-fold increase in Young's modulus (∼6.9 MPa vs. ∼3.4 MPa) and toughness (∼750 kJ m−3vs. ∼390 kJ m−3). The similar stress relaxation behavior and activation energy of viscous flow indicated comparable bond exchange dynamics between the two vitrimers, while the lignin-derivable system demonstrated higher thermal healing efficiency with improved recovery of tensile properties after reprocessing. These findings highlight the potential of lignin-based aromatics in designing mechanically robust and sustainable vitrimers, aligning with efforts to develop renewable and reprocessable polymeric materials. 
    more » « less
  3. null (Ed.)
    Vitrimers with bond exchange reactions (BERs) are a class of covalent adaptable network (CAN) polymers at the forefront of recent polymer research. They exhibit malleable and self-healable behaviors and combine the advantages of easy processability of thermoplastics and excellent mechanical properties of thermosets. For thermally sensitive vitrimers, a molecular topology melting/frozen transition is triggered when the BERs are activated to rearrange the network architecture. Notable volume expansion and stress relaxation are accompanied, which can be used to identify the BER activation temperature and rate as well as to determine the malleability and interfacial welding kinetics of vitrimers. Existing works on vitrimers reveal the rate-dependent behaviors of the nonequilibrium network during the topology transition. However, it remains unclear what the quantitative relationship with heating rate is, and how it will affect the macroscopic stress relaxation. In this paper, we study the responses of an epoxy-based vitrimer subjected to a change in temperature and mechanical loading during the topology transition. Using thermal expansion tests, the thermal strain evolution is shown to depend on the temperature-changing rate, which reveals the nonequilibrium states with rate-dependent structural relaxation. The influences of structural relaxation on the stress relaxation behaviors are examined in both uniaxial tension and compression modes. Assisted by a theoretical model, the study reveals how to tune the material and thermal-temporal conditions to promote the contribution of BERs during the reprocessing of vitrimers. 
    more » « less
  4. Self-healing thermoset epoxy based on dynamic covalent bond chemistry has been developed in the past several years, which warrants the creation of recyclable epoxy. However, the existing systems produce epoxy that has lower strength, stiffness, and glass transition temperature, making them unsuitable for load-bearing structures. In this study, we developed a new recyclable thermoset epoxy through solid form recycling. The epoxy has strength, stiffness, and glass transition temperature similar to those found in conventional thermoset epoxy. The effect of healing temperature, healing time, healing pressure, and powder size on the healing efficiency was experimentally investigated. It was found that the healing efficiency is as high as 88.1%, and the epoxy can be recycled more than one time. 
    more » « less
  5. Abstract A liquid crystalline elastomer (LCE) network consisting of dynamic covalent bonds (DCBs) is referred as a LCE vitrimer. The mesogen alignment and the network topology can be reprogrammed locally in the LCE vitrimer by activating the bond exchange reactions using an external stimulus. After removal of the external stress, a new network is formed and the reprogrammed shape can be fixed, leading to a different set of the physical properties of the LCE vitrimers. Herein, this type of emerging materials is reviewed by a brief introduction of the fundamentals of LCEs, followed by discussions of various DCBs and the design principles for LCE vitrimers. After a presentation of different strategies to improve the stability and reprogrammability of the registered mesogen alignment, approaches to prepare LCE vitrimers with complex shapes and their actuations are discussed. Potential applications such as self‐healing and recycling, mechanochromic effects, and post‐functionalization of nanopores are also reviewed, followed by the conclusion of the remaining challenges and opportunities. 
    more » « less