skip to main content

Title: Influence of treating parameters on thermomechanical properties of recycled epoxy-acid vitrimers
Vitrimers have the characteristics of shape-reforming and surface-welding, and have the same excellent mechanical properties as thermosets; so vitrimers hold the promise of a broad alternative to traditional plastics. Since their initial introduction in 2011, vitrimers have been applied to many unique applications such as reworkable composites and liquid crystal elastomer actuators. A series of experiments have investigated the effects of reprocessing conditions (such as temperature, time, and pressure) on recycled materials. However, the effect of particle size on the mechanical properties of recycled materials has not been reported. In this paper, we conducted an experimental study on the recovery of epoxy-acid vitrimers of different particle sizes. Epoxy-acid vitrimer powders with different particle size distributions were prepared and characterized. The effects of particle size on the mechanical properties of regenerated epoxy-acid vitrimers were investigated by dynamic mechanical analysis and uniaxial tensile tests. In addition, other processing parameters such as temperature, time, and pressure are discussed, as well as their interaction with particle size. This study helped to refine the vitrimer reprocessing condition parameter toolbox, providing experimental support for the easy and reliable control of the kinetics of the bond exchange reaction.
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1901807
Publication Date:
NSF-PAR ID:
10178934
Journal Name:
Soft Matter
Volume:
16
Issue:
6
Page Range or eLocation-ID:
1668 to 1677
ISSN:
1744-683X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vitrimers with bond exchange reactions (BERs) are a class of covalent adaptable network (CAN) polymers at the forefront of recent polymer research. They exhibit malleable and self-healable behaviors and combine the advantages of easy processability of thermoplastics and excellent mechanical properties of thermosets. For thermally sensitive vitrimers, a molecular topology melting/frozen transition is triggered when the BERs are activated to rearrange the network architecture. Notable volume expansion and stress relaxation are accompanied, which can be used to identify the BER activation temperature and rate as well as to determine the malleability and interfacial welding kinetics of vitrimers. Existing works onmore »vitrimers reveal the rate-dependent behaviors of the nonequilibrium network during the topology transition. However, it remains unclear what the quantitative relationship with heating rate is, and how it will affect the macroscopic stress relaxation. In this paper, we study the responses of an epoxy-based vitrimer subjected to a change in temperature and mechanical loading during the topology transition. Using thermal expansion tests, the thermal strain evolution is shown to depend on the temperature-changing rate, which reveals the nonequilibrium states with rate-dependent structural relaxation. The influences of structural relaxation on the stress relaxation behaviors are examined in both uniaxial tension and compression modes. Assisted by a theoretical model, the study reveals how to tune the material and thermal-temporal conditions to promote the contribution of BERs during the reprocessing of vitrimers.« less
  2. Self-healing thermoset epoxy based on dynamic covalent bond chemistry has been developed in the past several years, which warrants the creation of recyclable epoxy. However, the existing systems produce epoxy that has lower strength, stiffness, and glass transition temperature, making them unsuitable for load-bearing structures. In this study, we developed a new recyclable thermoset epoxy through solid form recycling. The epoxy has strength, stiffness, and glass transition temperature similar to those found in conventional thermoset epoxy. The effect of healing temperature, healing time, healing pressure, and powder size on the healing efficiency was experimentally investigated. It was found that themore »healing efficiency is as high as 88.1%, and the epoxy can be recycled more than one time.« less
  3. Carbon fiber reinforced polymer (CFRP) composites have been increasingly used to replace metal parts in many industries such as aerospace, marine, automotive, and sporting goods. The CFRP parts compared with their metallic counter parts have the advantages of lightweight, significantly higher tensile strength, stiffer, and corrosion resistant. On the other hand, compared with many metal parts, the CFRP parts have many well-known disadvantages including the lower toughness, lower through-thickness tensile and shear strengths, lower thermal conductivity, lower electrical conductivity, and lower operating temperature. These disadvantages have made the conversion from metal parts into CFRP parts challenging and costly to design,more »manufacture, and maintain. The use of nanoparticles in polymer has been studied in the recent two decades. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been dispersed in various thermoset and thermoplastic polymers and improved the mechanical, electrical, and thermal properties; however, the properties were not comparable to CFRP. Later, researchers tried to infuse CNTs or CNFs into either carbon fiber preforms [1] or glass fiber preforms [2] for improving the mechanical properties. But the results were marginal and with great uncertainty due to the challenges of nanoparticle dispersion, filtering, and alignment while being infused through the fiber preform. The glass fiber preform experiments ended with relatively more consistent improvement than the carbon fiber preform experiments since that the glass fiber preform has significantly larger pores than the carbon fiber preform' s. The small pore size presented a great challenge for infusing millions of unaligned long CNTs or CNFs through the carbon fiber preform without being filtered. To infuse long CNFs or CNTs through the carbon fiber preform and achieve reliable improvements, especially for 55% or higher carbon fiber volume fraction with increasingly tighter pores, an innovative plan for the processing and nano-reinforcing strategy is necessary. The z-threading strategy [3, 4, 5] has been reported to have consistent experimental successes in achieving the statistically meaningful improvement in multifunctional properties. The manufacturing steps of the CNF z-threaded CFRP (ZT-CFRP) are: (1) disperse the CNFs in a resin, (2) use a strong electrical field to align the CNFs in either the B-stage epoxy film or a CNF/resin impregnated sponge layer, whereas the CNFs are aligned in the through-thickness direction of the film or sponge layer. (3) place the resin film or sponge layer on a preheated dry carbon fiber fabric and press the resin film into the hot carbon fabric and allow the resin flow to carry the well-aligned CNFs to thread through the pores in the carbon fabric. (4) cool down the resin saturated and CNF z-threaded carbon fiber fabric to obtain the ZT-CFRP prepreg. (5) use the ZT-CFRP prepreg to make the ZT-CFRP laminate. Compared with the traditional CFRP, the ZT-CFRP laminates were reported of having improvement in the Mode-I delamination toughness, interlaminar shear strength, longitudinal compressive strength, through-thickness electrical conductivity, through-thickness thermal conductivity, and can reach the carbon fiber volume fraction of 55-80%. It is an effective approach to achieve a multifunctional CFRP for potentially expanding CFRP's applications.« less
  4. Autoignition delay time data are one important means to develop, quantify, and validate fundamental understanding of combustion chemistry at low temperatures (T<1200 K). However, low-temperature chemistry often has higher uncertainties and scatter in the experimental data compared with high-temperature ignition data (T>1200 K). In this study, autoignition properties of propane and oxygen mixtures were investigated using the University of Michigan rapid compression facility in order to understand the effects of ignition regimes on low-temperature ignition data. For the first time for propane, autoignition delay times were determined from pressure histories, and autoignition characteristics were simultaneously recorded using high-speed imaging ofmore »the test section through a transparent end-wall. Propane mixtures with fuel-to-O2 equivalence ratios of ϕ = 0.25 and ϕ = 0.5 and O2-to-inert gas molar ratios of 1:3.76 were studied over the pressure range of 8.9 to 11.3 atm and the temperature range of 930 – 1070 K. The results showed homogeneous or strong autoignition occurred for all ϕ = 0.25 experiments, and inhomogeneous or mixed autoignition occurred for all ϕ = 0.5 experiments. While a limited temperature range is covered in the study, importantly the data span predicted transitions in autoignition behavior, allowing validation of autoignition regime hypotheses. Specifically, the results agree well with strong-autoignition limits proposed based on the Sankaran Criterion. The autoignition delay time data at the strong-ignition conditions are in excellent agreement with predictions using a well-validated detailed reaction mechanism from the literature and a zero-dimensional modeling assumption. However, the experimental data at the mixed autoignition conditions were systematically faster than the model predictions, particularly at lower temperatures (T< ~970 K). The results are an important addition to the growing body of data in the literature that show mixed autoignition phenomena are important sources of the higher scatter observed in the low-temperature autoignition data for propane and other fuels. The results are discussed in terms of different methods to capture the effects of pre-autoignition heat release associated with mixed autoignition conditions and thereby address some of the discrepancies between kinetic modeling and experimental measurements.« less
  5. In the present study, the flow inside a real size Diesel fuel injector nozzle was modeled and analyzed under different boundary conditions using ANSYS-Fluent software. A validation was performed by comparing our numerical results with previous experimental data for a rectangular shape nozzle. Schnerr-Sauer cavitation model, which was selected for this study, was also validated. Two-equation k-ε turbulence model was selected since it had good agreement with experimental data. To reduce the computing time, due to symmetry of this nozzle, only one-sixth of this nozzle was modeled. Our present six-hole Diesel injector nozzle was modeled with different needle lifts includingmore »30 μm, 100 μm and 250 μm. Effects of different needle lifts on mass flow rate, discharge coefficient and length of cavitation were evaluated comprehensively. Three different fuels including one Diesel fuel and two bio-Diesel fuels were also included in these numerical simulations. Behavior of these fuels was investigated for different needle lifts and pressure differences. For comparing the results, discharge coefficient, mass flow rate and length of cavitation region were compared under different boundary conditions and for several fuel types. The extreme temperature spike at the center of an imploding cavitation bubble was also analyzed as a function of time and initial bubble size.« less