skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Errors Observed during UAV-Based Vertical Measurements Using Computational Fluid Dynamics
Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements. For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measurements from a recent field campaign showed notable discrepancies between data from ascent and descent, which suggested the UAV downwash may be the cause. To investigate and explain these observed discrepancies, we use high-fidelity computational fluid dynamics (CFD) simulations to simulate a UAV during vertical flight. We use a tracer to model a gaseous pollutant and evaluate the impact of the rotor-downwash on the concentration around the UAV. Our results indicate that, when measuring in a gradient, UAV-based measurements were ∼50% greater than the expected concentration during descent, but they were accurate during ascent, regardless of the location of the sensor. These results provide an explanation for errors encountered during vertical measurements and provide insight for accurate data collection methods in future studies.  more » « less
Award ID(s):
2125997
PAR ID:
10392192
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Drones
Volume:
6
Issue:
9
ISSN:
2504-446X
Page Range / eLocation ID:
253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses challenges in agricultural unmanned aerial vehicle (A-UAV) positioning, emphasizing the significance of accurate position estimation for applications like coverage path planning under depended noises. The study introduces a solution involving a PCA-based maximum correntropy Kalman filter (PCA-MCKF) to mitigate issues such as lowaltitude flight control, inaccurate position estimation due to coloured noise, and non-Gaussian distribution, including wind effects. Comparative analysis with traditional methods, such as Kalman filter (KF), PCA-KF, and PCA-MCKF, is conducted using four rotor-wing UAVs with linear and nonlinear dynamical models. The paper employs interval type-2 Fuzzy PID as an intelligent controller method and constant acceleration and constant velocity manoeuvre models for estimation. Root mean square error is used as the accuracy metric, and real-time simulations in Webots demonstrate the superiority of the proposed PCA-MCKF in enhancing agricultural UAV applications. 
    more » « less
  2. Abstract Some bird species exhibit a flight behavior known as whiffling, in which the bird flies upside-down during landing, predator evasion, or courtship displays. Flying inverted causes the flight feathers to twist, creating gaps in the wing’s trailing edge. It has been suggested that these gaps decrease lift at a potentially lower energy cost, enabling the bird to maneuver and rapidly descend. Thus, avian whiffling has parallels to an uncrewed aerial vehicle (UAV) using spoilers for rapid descent and ailerons for roll control. However, while whiffling has been previously described in the biological literature, it has yet to directly inspire aerodynamic design. In the current research, we investigated if gaps in a wing’s trailing edge, similar to those caused by feather rotation during whiffling, could provide an effective mechanism for UAV control, particularly rapid descent and banking. To address this question, we performed a wind tunnel test of 3D printed wings with a varying amount of trailing edge gaps and compared the lift and rolling moment coefficients generated by the gapped wings to a traditional spoiler and aileron. Next, we used an analytical analysis to estimate the force and work required to actuate gaps, spoiler, and aileron. Our results showed that gapped wings did not reduce lift as much as a spoiler and required more work. However, we found that at high angles of attack, the gapped wings produced rolling moment coefficients equivalent to upwards aileron deflections of up to 32.7° while requiring substantially less actuation force and work. Thus, while the gapped wings did not provide a noticeable benefit over spoilers for rapid descent, a whiffling-inspired control surface could provide an effective alternative to ailerons for roll control. These findings suggest a novel control mechanism that may be advantageous for small fixed-wing UAVs, particularly energy-constrained aircraft. 
    more » « less
  3. null (Ed.)
    Nighttime vertical profiles of ozone, PM2.5 and PM10 particulate matter, carbon monoxide, temperature, and humidity were collected by a copter-type unmanned aerial vehicle (UAV) over the city of Manaus, Brazil, in central Amazon during the dry season of 2018. The vertical profiles were analyzed to understand the structure of the urban nighttime boundary layer (NBL) and pollution within it. The ozone concentration, temperature, and humidity had an inflection between 225 and 350 m on most nights, representing the top of the urban NBL. The profile of carbon monoxide concentration correlated well with the local evening vehicular congestion of a modern transportation fleet, providing insight into the surface-atmosphere dynamics. In contrast, events of elevated PM2.5 and PM10 concentrations were not explained well by local urban emissions, but rather by back trajectories that intersected regional biomass burning. These results highlight the potential of the emerging technologies of sensor payloads on UAVs to provide new constraints and insights for understanding the pollution dynamics in nighttime boundary layers in urban regions. 
    more » « less
  4. State of the art design and testing of avionics for unmanned aircraft is an iterative process that involves many test flights, interleaved with multiple revisions of the flight management software and hardware. To significantly reduce flight test time and software development costs, we have developed a real-time UAV Emulation Environment (uavEE) using ROS that interfaces with high fidelity simulators to simulate the flight behavior of the aircraft. Our uavEE emulates the avionics hardware by interfacing directly with the embedded hardware used in real flight. The modularity of uavEE allows the integration of countless test scenarios and applications. Furthermore, we present an accurate data driven approach for modeling of propulsion power of fixed-wing UAVs, which is integrated into uavEE. Finally, uavEE and the proposed UAV Power Model have been experimentally validated using a fixed-wing UAV testbed. 
    more » « less
  5. null (Ed.)
    Traditional configurations for mounting Temperature–Humidity (TH) sensors on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient radiation shielding, exposure to mixed and turbulent air from propellers, and inconsistent aspiration while situated in the wake of the UAS. Descent profiles using traditional methods are unreliable (when compared to an ascent profile) due to the turbulent mixing of air by the UAS while descending into that flow field. Consequently, atmospheric boundary layer profiles that rely on such configurations are bias-prone and unreliable in certain flight patterns (such as descent). This article describes and evaluates a novel sensor housing designed to shield airborne sensors from artificial heat sources and artificial wet-bulbing while pulling air from outside the rotor wash influence. The housing is mounted above the propellers to exploit the rotor-induced pressure deficits that passively induce a high-speed laminar airflow to aspirate the sensor consistently. Our design is modular, accommodates a variety of other sensors, and would be compatible with a wide range of commercially available multirotors. Extensive flight tests conducted at altitudes up to 500 m Above Ground Level (AGL) show that the housing facilitates reliable measurements of the boundary layer phenomena and is invariant in orientation to the ambient wind, even at high vertical/horizontal speeds (up to 5 m/s) for the UAS. A low standard deviation of errors shows a good agreement between the ascent and descent profiles and proves our unique design is reliable for various UAS missions. 
    more » « less