skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CLEAR: High-ionization [Ne v] λ3426 Emission-line Galaxies at 1.4 < z < 2.3
Abstract We analyze a sample of 25 [Nev] (λ3426) emission-line galaxies at 1.4 <z< 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS LyαEmission at Reionization (CLEAR) survey. [Nev] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev] in conjunction with other rest-frame UV/optical emission lines ([Oii]λλ3726, 3729, [Neiii]λ3869, Hβ, [Oiii]λλ4959, 5007, Hα+[Nii]λλ6548, 6583, [Sii]λλ6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev]-selected sample, the X-ray luminosities are consistent with local (z≲ 0.1) X-ray-selected Seyferts, but the [Nev] luminosities are more consistent with those fromz∼ 1 X-ray-selected QSOs. The excess [Nev] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev] excess, which could be related to the “soft (X-ray) excess” observed in some QSOs and Seyferts and/or be a consequence of a complex/anisotropic geometry for the narrow-line region, combined with absorption from a warm, relativistic wind ejected from the accretion disk. We also consider implications for future studies of extreme high-ionization systems in the epoch of reionization (z≳ 6) with the James Webb Space Telescope.  more » « less
Award ID(s):
1945546
PAR ID:
10413051
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 112
Size(s):
Article No. 112
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite the importance of active galactic nuclei (AGNs) in galaxy evolution, accurate AGN identification is often challenging, as common AGN diagnostics can be confused by contributions from star formation and other effects (e.g., Baldwin–Phillips–Terlevich diagrams). However, one promising avenue for identifying AGNs is “coronal emission lines” (“CLs”), which are highly ionized species of gas with ionization potentials ≥100 eV. These CLs may serve as excellent signatures for the strong ionizing continuum of AGNs. To determine if CLs are in fact strong AGN tracers, we assemble and analyze the largest catalog of optical CL galaxies using the Sloan Digital Sky Survey's Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) catalog. We detect CL emission in 71 MaNGA galaxies, out of the 10,010 unique galaxies from the final MaNGA catalog, with ≥5σconfidence. In our sample, we measure [Nev]λ3347,λ3427, [Fevii]λ3586,λ3760,λ6086, and [Fex]λ6374 emission and crossmatch the CL galaxies with a catalog of AGNs that were confirmed with broad-line, X-ray, IR, and radio observations. We find that [Nev] emission, compared to [Fevii] and [Fex] emission, is best at identifying high-luminosity AGNs. Moreover, we find that the CL galaxies with the least dust extinction yield the most iron CL detections. We posit that the bulk of the iron CLs are destroyed by dust grains in the galaxies with the highest [Oiii] luminosities in our sample, and that AGNs in the galaxies with low [Oiii] luminosities are possibly too weak to be detected using traditional techniques. 
    more » « less
  2. Abstract We use Hubble Space Telescope Wide Field Camera 3 G102 and G141 grism spectroscopy to measure rest-frame optical emission-line ratios of 533 galaxies atz∼ 1.5 in the CANDELS LyαEmission at Reionization survey. We compare [Oiii]/Hβversus [Sii]/(Hα+ [Nii]) as an “unVO87” diagram for 461 galaxies and [Oiii]/Hβversus [Neiii]/[Oii] as an “OHNO” diagram for 91 galaxies. The unVO87 diagram does not effectively separate active galactic nuclei (AGN) and [Nev] sources from star-forming galaxies, indicating that the unVO87 properties of star-forming galaxies evolve with redshift and overlap with AGN emission-line signatures atz> 1. The OHNO diagram does effectively separate X-ray AGN and [Nev]-emitting galaxies from the rest of the population. We find that the [Oiii]/Hβline ratios are significantly anticorrelated with stellar mass and significantly correlated with log ( L H β ) , while [Sii]/(Hα+ [Nii]) is significantly anticorrelated with log ( L H β ) . Comparison with MAPPINGS V photoionization models indicates that these trends are consistent with lower metallicity and higher ionization in low-mass and high-star formation rate (SFR) galaxies. We do not find evidence for redshift evolution of the emission-line ratios outside of the correlations with mass and SFR. Our results suggest that the OHNO diagram of [Oiii]/Hβversus [Neiii]/[Oii] will be a useful indicator of AGN content and gas conditions in very high-redshift galaxies to be observed by the James Webb Space Telescope. 
    more » « less
  3. Abstract We present rest-frame optical emission-line flux ratio measurements for fivez> 5 galaxies observed by the James Webb Space Telescope Near-Infared Spectrograph (NIRSpec) in the SMACS 0723 Early Release Observations. We add several quality-control and post-processing steps to the NIRSpec pipeline reduction products in order to ensure reliablerelativeflux calibration of emission lines that are closely separated in wavelength, despite the uncertainabsolutespectrophotometry of the current version of the reductions. Compared toz∼ 3 galaxies in the literature, thez> 5 galaxies have similar [Oiii]λ5008/Hβratios, similar [Oiii]λ4364/Hγratios, and higher (∼0.5 dex) [NeIII]λ3870/[OII]λ3728 ratios. We compare the observations to MAPPINGS V photoionization models and find that the measured [NeIII]λ3870/[OII]λ3728, [Oiii]λ4364/Hγ, and [Oiii]λ5008/Hβemission-line ratios are consistent with an interstellar medium (ISM) that has very high ionization ( log ( Q ) 8 9 , units of cm s−1), low metallicity (Z/Z≲ 0.2), and very high pressure ( log ( P / k ) 8 9 , units of cm−3). The combination of [Oiii]λ4364/Hγand [Oiii]λ(4960 + 5008)/Hβline ratios indicate very high electron temperatures of 4.1 < log ( T e / K ) < 4.4 , further implying metallicities ofZ/Z≲ 0.2 with the application of low-redshift calibrations for “Te-based” metallicities. These observations represent a tantalizing new view of the physical conditions of the ISM in galaxies at cosmic dawn. 
    more » « less
  4. Abstract Observations of high-redshift galaxies ( z > 5) have shown that these galaxies have extreme emission lines with equivalent widths much larger than their local star-forming counterparts. Extreme emission line galaxies (EELGs) in the nearby universe are likely analogs to galaxies during the Epoch of Reionization and provide nearby laboratories to understand the physical processes important to the early universe. We use Hubble Space Telescope/Cosmic Origins Spectrograph and Large Binocular Telescope/Multi-Object Double Spectrographs spectra to study two nearby EELGs, J104457 and J141851. The far-UV spectra indicate that these two galaxies contain stellar populations with ages ≲10 Myr and metallicities ≤0.15 Z ⊙ . We use photoionization modeling to compare emission lines from models of single-age bursts of star formation to observed emission lines and find that the single-age bursts do not reproduce high-ionization lines including [O iii ] or very-high-ionization lines like He ii or O iv ]. Photoionization modeling using the stellar populations fit from the UV continuum similarly is not capable of reproducing the very-high-energy emission lines. We add a blackbody to the stellar populations fit from the UV continuum to model the necessary high-energy photons to reproduce the very-high-ionization lines of He ii and O iv ]. We find that we need a blackbody of 80,000 K and ∼45%–55% of the luminosity from the blackbody and young stellar population to reproduce the very-high-ionization lines while simultaneously reproducing the low-, intermediate-, and high-ionization emission lines. Our self-consistent model of the ionizing spectra of two nearby EELGs indicates the presence of a previously unaccounted-for source of hard ionizing photons in reionization analogs. 
    more » « less
  5. Abstract We characterize the multiphase circumgalactic medium (CGM) and galaxy properties atz= 6.0–6.5 in four quasar fields from the James Webb Space Telescope A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) program. We use the Very Large Telescope/X-shooter spectra of quasar J0305–3150 to identify one new metal absorber atz= 6.2713 with multiple transitions (Oi, Mgii, Feii,and Cii). They are combined with the published absorbing systems in Davies et al. at the same redshift range to form a sample of nine metal absorbers atz= 6.03–6.49. We identify eight galaxies within 1000 km s−1and 350 kpc around the absorbing gas from the ASPIRE spectroscopic data, with their redshifts secured by [Oiii] (λλ4959, 5007) doublets and Hβemission lines. Our spectral energy distribution fitting indicates that the absorbing galaxies have stellar masses ranging from 107.2to 108.8Mand metallicity between 0.02 and 0.4 solar. Notably, thez= 6.2713 system in the J0305–3150 field resides in a galaxy overdensity region, which contains two (tentatively) merging galaxies within 350 kpc and seven galaxies within 1 Mpc. We measure the relative abundances ofαelements to iron ([α/Fe]) and find that the CGM gas in the most overdense region exhibits a lower [α/Fe] ratio. Our modeling of the galaxy’s chemical abundance favors a top-heavy stellar initial mass function and hints that we may be witnessing the contribution of the first generation of Population III stars to the CGM at the end of the reionization epoch. 
    more » « less