skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Light Curves and Event Rates of Axion Instability Supernovae
Abstract It was recently proposed that exotic particles can trigger a new stellar instability that is analogous to theee+pair instability if they are produced and reach equilibrium in the stellar plasma. In this study, we construct axion instability supernova (AISN) models caused by the new instability to predict their observational signatures. We focus on heavy axion-like particles (ALPs) with masses of ∼400 keV–2 MeV and coupling with photons ofg∼ 10−5GeV−1. It is found that the56Ni mass and the explosion energy are significantly increased by ALPs for a fixed stellar mass. As a result, the peak times of the light curves of AISNe occur earlier than those of standard pair-instability supernovae by 10–20 days when the ALP mass is equal to the electron mass. Also, the event rate of AISNe is 1.7–2.6 times higher than that of pair-instability supernovae, depending on the high mass cutoff of the initial mass function.  more » « less
Award ID(s):
1908960 1914409
PAR ID:
10392212
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
943
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 12
Size(s):
Article No. 12
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> The Electron-Ion Collider (EIC), a forthcoming powerful high-luminosity facility, represents an exciting opportunity to explore new physics. In this article, we study the potential of the EIC to probe the coupling between axion-like particles (ALPs) and photons in coherent scattering. The ALPs can be produced via photon fusion and decay back to two photons inside the EIC detector. In a prompt-decay search, we find that the EIC can set the most stringent bound forma≲ 20 GeV and probe the effective scales Λ ≲ 105GeV. In a displaced-vertex search, which requires adopting an EM calorimeter technology that provides directionality, the EIC could probe ALPs withma≲ 1 GeV at effective scales Λ ≲ 107GeV. Combining the two search strategies, the EIC can probe a significant portion of unexplored parameter space in the 0.2 <ma< 20 GeV mass range. 
    more » « less
  2. Axion-like particles (ALPs) arise from well-motivated extensions to the Standard Model and could account for dark matter. ALP dark matter would manifest as a field oscillating at an (as of yet) unknown frequency. The frequency depends linearly on the ALP mass and plausibly ranges from 10−22to 10 eV/c2. This motivates broadband search approaches. We report on a direct search for ALP dark matter with an interferometer composed of two atomic K-Rb-3He comagnetometers, one situated in Mainz, Germany, and the other in Kraków, Poland. We leverage the anticipated spatio-temporal coherence properties of the ALP field and probe all ALP-gradient-spin interactions covering a mass range of nine orders of magnitude. No significant evidence of an ALP signal is found. We thus place new upper limits on the ALP-neutron, ALP-proton and ALP-electron couplings reaching belowgaNN < 10−9 GeV−1,gaPP < 10−7 GeV−1andgaee < 10−6 GeV−1, respectively. These limits improve upon previous laboratory constraints for neutron and proton couplings by up to three orders of magnitude. 
    more » « less
  3. A<sc>bstract</sc> The first FASER search for a light, long-lived particle decaying into a pair of photons is reported. The search uses LHC proton-proton collision data at$$ \sqrt{s} $$ s = 13.6 TeV collected in 2022 and 2023, corresponding to an integrated luminosity of 57.7 fb−1. A model with axion-like particles (ALPs) dominantly coupled to weak gauge bosons is the primary target. Signal events are characterised by high-energy deposits in the electromagnetic calorimeter and no signal in the veto scintillators. One event is observed, compared to a background expectation of 0.44 ± 0.39 events, which is entirely dominated by neutrino interactions. World-leading constraints on ALPs are obtained for masses up to 300 MeV and couplings to the Standard Model W gauge boson,gaWW, around 10−4GeV−1, testing a previously unexplored region of parameter space. Other new particle models that lead to the same experimental signature, including ALPs coupled to gluons or photons, U(1)Bgauge bosons, up-philic scalars, and a Type-I two-Higgs doublet model, are also considered for interpretation, and new constraints on previously viable parameter space are presented in this paper. 
    more » « less
  4. A<sc>bstract</sc> In studying secondary gamma-ray emissions from Primordial Black Holes (PBHs), the production of scalar particles like pions and axion-like particles (ALPs) via Hawking radiation is crucial. While previous analyses assumed relativistic production, asteroid-mass PBHs, relevant to upcoming experiments like AMEGO-X, likely produce pions and ALPs non-relativistically when their masses exceed 10 MeV. To account for mass dependence in Hawking radiation, we revisit the greybody factors for massive scalars from Schwarzschild black holes, revealing significant mass corrections to particle production rates compared to the projected AMEGO-X sensitivity. We highlight the importance of considering non-relativisticπ0production in interpreting PBH gamma-ray signals, essential for determining PBH properties. Additionally, we comment on the potential suppression of pion production due to form factor effects when producing extended objects via Hawking radiation. We also provide an example code for calculating the Hawking radiation spectrum of massive scalar particles Image missing<#comment/>. 
    more » « less
  5. A<sc>bstract</sc> Measurements of light-by-light scattering (LbL,γγ → γγ) and the Breit-Wheeler process (BW,γγ →e+e) are reported in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The data sample, corresponding to an integrated luminosity of 1.7 nb−1, was collected by the CMS experiment at the CERN LHC in 2018. Events with an exclusively producedγγore+epair with invariant massesmγγ,ee>5 GeV, along with other fiducial criteria, are selected. The measured BW fiducial production cross section,σfid(γγ → e+e) = 263.5±1.8(stat)±17.8(syst)μb, as well as the differential distributions for various kinematic observables, are in agreement with leading-order quantum electrodynamics predictions complemented with final-state photon radiation. The measured differential BW cross sections allow discrimination between different theoretical descriptions of the photon flux of the lead ion. In the LbL final state, 26 exclusive diphoton candidate events are observed compared with 12.0 ± 2.9 expected for the background. Combined with previous results, the observed significance of the LbL signal with respect to the background-only hypothesis is above five standard deviations. The measured fiducial LbL scattering cross section,σfid(γγ→γγ) = 107 ± 24(stat) ± 13(syst) nb, is in agreement with next- to-leading-order predictions. Limits on the production of axion-like particles coupled to photons are set over the mass range 5–100 GeV, including the most stringent limits to date in the range of 5–10 GeV. 
    more » « less