skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1908960

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT How massive stars end their lives depends on the core mass, core angular momentum, and hydrogen envelopes at death. However, these key physical facets of stellar evolution can be severely affected by binary interactions. In turn, the effectiveness of binary interactions itself varies greatly depending on the initial conditions of the binaries, making the situation much more complex. We investigate systematically how binary interactions influence core–collapse progenitors and their fates. Binary evolution simulations are performed to survey the parameter space of supernova progenitors in solar metallicity binary systems and to delineate major evolutionary paths. We first study fixed binary mass ratios ($$q=M_2/M_1$$ = 0.5, 0.7, and 0.9) to elucidate the impacts of initial mass and initial separation on the outcomes, treating separately Type Ibc supernova, Type II supernova, accretion-induced collapse (AIC), rapidly rotating supernova (Ibc-R), black hole formation, and long gamma ray burst (long GRB). We then conduct 12 binary population synthesis model calculations, varying the initial condition distributions and binary evolution parameters, to estimate various supernova fractions. We obtain a Milky Way supernova rate $$R_{\rm SN} = (1.78$$–$$2.47) \times 10^{-2} \, {\rm yr}^{-1}$$ which is consistent with observations. We find the rates of AIC, Ibc-R, and long GRB to be $$\sim 1/100$$ the rate of regular supernovae. Our estimated long GRB rates are higher than the observed long GRB rate and close to the low luminosity GRB rate, although care must be taken considering our models are computed with solar metallicity. Furthering binary modelling and improving the inputs one by one will enable more detailed studies of these and other transients associated with massive stars. 
    more » « less
  2. ABSTRACT The gamma-ray Fermi-LAT Galactic Centre excess (GCE) has puzzled scientists for over 15 yr. Despite ongoing debates about its properties, and especially its spatial distribution, its nature remains elusive. We scrutinize how the estimated spatial morphology of this excess depends on models for the Galactic diffuse emission, focusing particularly on the extent to which the Galactic plane and point sources are masked. Our main aim is to compare a spherically symmetric morphology – potentially arising from the annihilation of dark matter (DM) particles – with a boxy morphology – expected if faint unresolved sources in the Galactic bulge dominate the excess emission. Recent claims favouring a DM-motivated template for the GCE are shown to rely on a specific Galactic bulge template, which performs worse than other templates for the Galactic bulge. We find that a non-parametric model of the Galactic bulge derived from the VISTA Variables in the Via Lactea survey results in a significantly better fit for the GCE than DM-motivated templates. This result is independent of whether a galprop-based model or a more non-parametric ring-based model is used to describe the diffuse Galactic emission. This conclusion remains true even when additional freedom is added in the background models, allowing for non-parametric modulation of the model components and substantially improving the fit quality. When adopted, optimized background models provide robust results in terms of preference for a boxy bulge morphology for the GCE, regardless of the mask applied to the Galactic plane. 
    more » « less
  3. ABSTRACT The origin of the radio synchrotron background (RSB) is currently unknown. Its understanding might have profound implications in fundamental physics or might reveal a new class of radio emitters. In this work, we consider the scenario in which the RSB is due to extragalactic radio sources and measure the angular cross-correlation of Low-Frequency Array (LOFAR) images of the diffuse radio sky with matter tracers at different redshifts, provided by galaxy catalogues and cosmic microwave background lensing. We compare these measured cross-correlations to those expected for models of RSB sources. We find that low-redshift populations of discrete sources are excluded by the data, while higher redshift explanations are compatible with available observations. We also conclude that at least 20 per cent of the RSB surface brightness level must originate from populations tracing the large-scale distribution of matter in the Universe, indicating that at least this fraction of the RSB is of extragalactic origin. Future measurements of the correlation between the RSB and tracers of high-redshift sources will be crucial to constraining the source population of the RSB. 
    more » « less
  4. ABSTRACT We compile a catalogue of 578 highly probable and 62 likely red supergiants (RSGs) of the Milky Way, which represents the largest list of Galactic RSG candidates designed for continuous follow-up efforts to date. We match distances measured by Gaia DR3, 2MASS photometry, and a 3D Galactic dust map to obtain luminous bright late-type stars. Determining the stars’ bolometric luminosities and effective temperatures, we compare to Geneva stellar evolution tracks to determine likely RSG candidates, and quantify contamination using a catalogue of Galactic AGB in the same luminosity-temperature space. We add details for common or interesting characteristics of RSG, such as multistar system membership, variability, and classification as a runaway. As potential future core-collapse supernova progenitors, we study the ability of the catalogue to inform the Supernova Early Warning System (SNEWS) coincidence network made to automate pointing, and show that for 3D position estimates made possible by neutrinos, the number of progenitor candidates can be significantly reduced, improving our ability to observe the progenitor pre-explosion and the early phases of core-collapse supernovae. 
    more » « less
  5. ABSTRACT We perform a comparative analysis of nucleosynthesis yields from binary neutron star (BNS) mergers, black hole-neutron star (BHNS) mergers, and core-collapse supernovae (CCSNe) with the goal of determining which are the most dominant sources of r-process enrichment observed in stars. We find that BNS and BHNS binaries may eject similar mass distributions of robust r-process nuclei post-merger (up to third peak and actinides, A ∼ 200−240), after accounting for the volumetric event rates. Magnetorotational (MR) CCSNe likely undergo a weak r-process (up to A ∼ 140) and contribute to the production of light element primary process (LEPP) nuclei, whereas typical thermal, neutrino-driven CCSNe only synthesize up to first r-process peak nuclei (A ∼ 80−90). We also find that the upper limit to the rate of MR CCSNe is $$\lesssim 1~{{\ \rm per\ cent}}$$ the rate of typical thermal CCSNe; if the rate was higher, then weak r-process nuclei would be overproduced. Although the largest uncertainty is from the volumetric event rate, the prospects are encouraging for confirming these rates in the next few years with upcoming surveys. Using a simple model to estimate the resulting kilonova light curve from mergers and our set of fiducial merger parameters, we predict that ∼7 BNS and ∼2 BHNS events will be detectable per year by the Vera C. Rubin Observatory (LSST), with prior gravitational wave (GW) triggers. 
    more » « less
  6. ABSTRACT We present the largest low frequency (120 MHz) arcminute resolution image of the radio synchrotron background (RSB) to date, and its corresponding angular power spectrum of anisotropies (APS) with angular scales ranging from 3° to 0.3 arcmin. We show that the RSB around the north celestial pole has a significant excess anisotropy power at all scales over a model of unclustered point sources based on source counts of known source classes. This anisotropy excess, which does not seem attributable to the diffuse Galactic emission, could be linked to the surface brightness excess of the RSB. To better understand the information contained within the measured APS, we model the RSB varying the brightness distribution, size, and angular clustering of potential sources. We show that the observed APS could be produced by a population of faint clustered point sources only if the clustering is extreme and the size of the Gaussian clusters is ≲1 arcmin. We also show that the observed APS could be produced by a population of faint diffuse sources with sizes ≲1 arcmin, and this is supported by features present in our image. Both of these cases would also cause an associated surface brightness excess. These classes of sources are in a parameter space not well probed by even the deepest radio surveys to date. 
    more » « less
  7. Abstract It was recently proposed that exotic particles can trigger a new stellar instability that is analogous to theee+pair instability if they are produced and reach equilibrium in the stellar plasma. In this study, we construct axion instability supernova (AISN) models caused by the new instability to predict their observational signatures. We focus on heavy axion-like particles (ALPs) with masses of ∼400 keV–2 MeV and coupling with photons ofg∼ 10−5GeV−1. It is found that the56Ni mass and the explosion energy are significantly increased by ALPs for a fixed stellar mass. As a result, the peak times of the light curves of AISNe occur earlier than those of standard pair-instability supernovae by 10–20 days when the ALP mass is equal to the electron mass. Also, the event rate of AISNe is 1.7–2.6 times higher than that of pair-instability supernovae, depending on the high mass cutoff of the initial mass function. 
    more » « less
  8. ABSTRACT Relativistic jets originating from protomagnetar central engines can lead to long duration gamma-ray bursts (GRBs) and are considered potential sources of ultra-high-energy cosmic rays and secondary neutrinos. We explore the propagation of such jets through a broad range of progenitors, from stars which have shed their envelopes to supergiants which have not. We use a semi-analytical spin-down model for the strongly magnetized and rapidly rotating protoneutron star (PNS) to investigate the role of central engine properties such as the surface dipole field strength, initial rotation period, and jet opening angle on the interactions and dynamical evolution of the jet-cocoon system. With this model, we determine the properties of the relativistic jet, the mildly relativistic cocoon, and the collimation shock in terms of system parameters such as the time-dependent jet luminosity, injection angle, and density profile of the stellar medium. We also analyse the criteria for a successful jet breakout, the maximum energy that can be deposited into the cocoon by the relativistic jet, and structural stability of the magnetized outflow relative to local instabilities. Lastly, we compute the high-energy neutrino emission as these magnetized outflows burrow through their progenitors. Precursor neutrinos from successful GRB jets are unlikely to be detected by IceCube, which is consistent with the results of previous works. On the other hand, we find that high-energy neutrinos may be produced for extended progenitors like blue and red supergiants, and we estimate the detectability of neutrinos with next generation detectors such as IceCube-Gen2. 
    more » « less
  9. ABSTRACT It has been suggested that strongly magnetized and rapidly rotating protoneutron stars (PNSs) may produce long duration gamma-ray bursts (GRBs) originating from stellar core collapse. We explore the steady-state properties and heavy element nucleosynthesis in neutrino-driven winds from such PNSs whose magnetic axis is generally misaligned with the axis of rotation. We consider a wide variety of central engine properties such as surface dipole field strength, initial rotation period, and magnetic obliquity to show that heavy element nuclei can be synthesized in the radially expanding wind. This process is facilitated provided the outflow is Poynting-flux dominated such that its low entropy and fast expansion time-scale enables heavy nuclei to form in a more efficient manner as compared to the equivalent thermal GRB outflows. We also examine the acceleration and survival of these heavy nuclei and show that they can reach sufficiently high energies ≳ 1020 eV within the same physical regions that are also responsible for powering gamma-ray emission, primarily through magnetic dissipation processes. Although these magnetized outflows generally fail to achieve the production of elements heavier than lanthanides for our explored electron fraction range 0.4–0.6, we show that they are more than capable of synthesizing nuclei near and beyond iron peak elements. 
    more » « less
  10. ABSTRACT We explore the assumption, widely used in many astrophysical calculations, that the stellar initial mass function (IMF) is universal across all galaxies. By considering both a canonical broken-power-law IMF and a non-universal IMF, we are able to compare the effect of different IMFs on multiple observables and derived quantities in astrophysics. Specifically, we consider a non-universal IMF that varies as a function of the local star formation rate, and explore the effects on the star formation rate density (SFRD), the extragalactic background light, the supernova (both core-collapse and thermonuclear) rates, and the diffuse supernova neutrino background. Our most interesting result is that our adopted varying IMF leads to much greater uncertainty on the SFRD at $$z \approx 2-4$$ than is usually assumed. Indeed, we find an SFRD (inferred using observed galaxy luminosity distributions) that is a factor of $$\gtrsim 3$$ lower than canonical results obtained using a universal IMF. Secondly, the non-universal IMF we explore implies a reduction in the supernova core-collapse rate of a factor of $$\sim 2$$, compared against a universal IMF. The other potential tracers are only slightly affected by changes to the properties of the IMF. We find that currently available data do not provide a clear preference for universal or non-universal IMF. However, improvements to measurements of the star formation rate and core-collapse supernova rate at redshifts $$z \gtrsim 2$$ may offer the best prospects for discernment. 
    more » « less