skip to main content


Title: Light Curves and Event Rates of Axion Instability Supernovae
Abstract

It was recently proposed that exotic particles can trigger a new stellar instability that is analogous to theee+pair instability if they are produced and reach equilibrium in the stellar plasma. In this study, we construct axion instability supernova (AISN) models caused by the new instability to predict their observational signatures. We focus on heavy axion-like particles (ALPs) with masses of ∼400 keV–2 MeV and coupling with photons ofgaγ∼ 10−5GeV−1. It is found that the56Ni mass and the explosion energy are significantly increased by ALPs for a fixed stellar mass. As a result, the peak times of the light curves of AISNe occur earlier than those of standard pair-instability supernovae by 10–20 days when the ALP mass is equal to the electron mass. Also, the event rate of AISNe is 1.7–2.6 times higher than that of pair-instability supernovae, depending on the high mass cutoff of the initial mass function.

 
more » « less
Award ID(s):
1908960 1914409
NSF-PAR ID:
10392212
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
943
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 12
Size(s):
["Article No. 12"]
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    The Electron-Ion Collider (EIC), a forthcoming powerful high-luminosity facility, represents an exciting opportunity to explore new physics. In this article, we study the potential of the EIC to probe the coupling between axion-like particles (ALPs) and photons in coherent scattering. The ALPs can be produced via photon fusion and decay back to two photons inside the EIC detector. In a prompt-decay search, we find that the EIC can set the most stringent bound forma≲ 20 GeV and probe the effective scales Λ ≲ 105GeV. In a displaced-vertex search, which requires adopting an EM calorimeter technology that provides directionality, the EIC could probe ALPs withma≲ 1 GeV at effective scales Λ ≲ 107GeV. Combining the two search strategies, the EIC can probe a significant portion of unexplored parameter space in the 0.2 <ma< 20 GeV mass range.

     
    more » « less
  2. Abstract

    Gravitational-wave (GW) detections of binary black hole (BH) mergers have begun to sample the cosmic BH mass distribution. The evolution of single stellar cores predicts a gap in the BH mass distribution due to pair-instability supernovae (PISNe). Determining the upper and lower edges of the BH mass gap can be useful for interpreting GW detections of merging BHs. We useMESAto evolve single, nonrotating, massive helium cores with a metallicity ofZ= 10−5, until they either collapse to form a BH or explode as a PISN, without leaving a compact remnant. We calculate the boundaries of the lower BH mass gap for S-factors in the range S(300 keV) = (77,203) keV b, corresponding to the ±3σuncertainty in our high-resolution tabulated12C(α,γ)16O reaction rate probability distribution function. We extensively test temporal and spatial resolutions for resolving the theoretical peak of the BH mass spectrum across the BH mass gap. We explore the convergence with respect to convective mixing and nuclear burning, finding that significant time resolution is needed to achieve convergence. We also test adopting a minimum diffusion coefficient to help lower-resolution models reach convergence. We establish a new lower edge of the upper mass gap asMlower6014+32Mfrom the ±3σuncertainty in the12C(α,γ)16O rate. We explore the effect of a larger 3αrate on the lower edge of the upper mass gap, findingMlower6918+34M. We compare our results with BHs reported in the Gravitational-Wave Transient Catalog.

     
    more » « less
  3. Abstract

    We present the survey design, implementation, and outlook for COSMOS-Web, a 255 hr treasury program conducted by the James Webb Space Telescope in its first cycle of observations. COSMOS-Web is a contiguous 0.54 deg2NIRCam imaging survey in four filters (F115W, F150W, F277W, and F444W) that will reach 5σpoint-source depths ranging ∼27.5–28.2 mag. In parallel, we will obtain 0.19 deg2of MIRI imaging in one filter (F770W) reaching 5σpoint-source depths of ∼25.3–26.0 mag. COSMOS-Web will build on the rich heritage of multiwavelength observations and data products available in the COSMOS field. The design of COSMOS-Web is motivated by three primary science goals: (1) to discover thousands of galaxies in the Epoch of Reionization (6 ≲z≲ 11) and map reionization’s spatial distribution, environments, and drivers on scales sufficiently large to mitigate cosmic variance, (2) to identify hundreds of rare quiescent galaxies atz> 4 and place constraints on the formation of the universe’s most-massive galaxies (M> 1010M), and (3) directly measure the evolution of the stellar-mass-to-halo-mass relation using weak gravitational lensing out toz∼ 2.5 and measure its variance with galaxies’ star formation histories and morphologies. In addition, we anticipate COSMOS-Web’s legacy value to reach far beyond these scientific goals, touching many other areas of astrophysics, such as the identification of the first direct collapse black hole candidates, ultracool subdwarf stars in the Galactic halo, and possibly the identification ofz> 10 pair-instability supernovae. In this paper we provide an overview of the survey’s key measurements, specifications, goals, and prospects for new discovery.

     
    more » « less
  4. Abstract

    We introduce the Phoenix Simulations, a suite of highly resolved cosmological simulations featuring hydrodynamics, primordial gas chemistry, primordial and enriched star formation and feedback, UV radiative transfer, and saved outputs with Δt= 200 kyr. We observe 73,523 individual primordial stars within 3313 distinct regions forming 2110 second-generation enriched star clusters byz≥ 12 within a combined 177.25 Mpc3volume across three simulations. The regions that lead to enriched star formation can contain ≳150 primordial stars, with 80% of regions having experienced combinations of primordial Type II, hypernovae, and/or pair-instability supernovae. Primordial supernovae enriched 0.8% of the volume, with 2% of enriched gas enriched by later-generation stars. We determine the extent of a primordial stellar region by its metal-rich or ionized hydrogen surrounding cloud; the metal-rich and ionized regions have time-dependent average radiir≲ 3kpc. 7 and 17% of regions haver> 7 kpc for metal-rich and ionized radii, respectively. We find that the metallicity distribution function of second-generation stars overlaps that of subsequent Population II star formation, spanning metal-deficient (∼7.94 × 10−8Z) to supersolar (∼3.71Z), and that 30.5% of second-generation stars haveZ> 10−2Z. We find that the metallicity of second-generation stars depends on progenitor configuration, with metals from pair-instability supernovae contributing to the most metal-rich clusters; these clusters form promptly after the supernova event. Finally, we create an interpretable regression model to predict the radius of the metal-rich influence of Population III star systems within the first 7–18 Myr after the first Population III stars form in the region.

     
    more » « less
  5. Abstract

    We derive purely gravitational constraints on dark matter and cosmic neutrino profiles in the solar system using asteroid (101955) Bennu. We focus on Bennu because of its extensive tracking data and high-fidelity trajectory modeling resulting from the OSIRIS-REx mission. We find that the local density of dark matter is bound byρDM ≲ 3.3 × 10-15 kg/m3 ≃ 6 × 106 ρ̅DM, in the vicinity of ∼ 1.1 au (where ρ̅DM ≃ 0.3 GeV/cm3). We show that high-precision tracking data of solar system objects can constrain cosmic neutrino overdensities relative to the Standard Model prediction n̅ν, at the level ofη ≡ nν/n̅ν ≲ 1.7 × 1011(0.1 eV/mν) (Saturn), comparable to the existing bounds from KATRIN and other previous laboratory experiments (withmνthe neutrino mass). These local bounds have interesting implications for existing and future direct-detection experiments. Our constraints apply to all dark matter candidates but are particularly meaningful for scenarios including solar halos, stellar basins, and axion miniclusters, which predict overdensities in the solar system. Furthermore, introducing a DM-SM long-range fifth force with a strength α̃Dtimes stronger than gravity, Bennu can set a constraint onρDM ≲ ρ̅DM(6 × 106/α̃D). These constraints can be improved in the future as the accuracy of tracking data improves, observational arcs increase, and more missions visit asteroids.

     
    more » « less